Answer:
Explanation:
a. the salt produced would be Mg3N2(magnesium nitride)
b. magnesium loses 2 electron to form Mg2+ ion and nitrogen gains 3 electron to form n3-
when several of these ions come together 3 Mg2+ ion combine with 2 n3- ion to form Mg3N2 thus Mg getting six electron from nitrogen to form a ionic bond.
c. the reaction is not balanced Mg + N2 = Mg3n2
to make it balanced the reaction should be 3 Mg + N2 = Mg3N2.
the reaction was not balanced before because the number of Mg on both side of the reaction was not equal.
d. magnesium nitrate has formula Mg(NO3)2 is formed when Mg combines with nitrogen and oxygen Mg + N2 + o2
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
Answer:
Ester Linkages
Explanation:
In a fat molecule, the fatty acids are attached to each of the three carbons of the glycerol molecule with an ester bond through the oxygen atom.
You're welcome