You would have to look for the mass of the sample and the volume of the sample.
Answer:

Explanation:
Ionic bond is a bond between metals and non-metals with strong forces of attraction between charged ions.
Answer:
∴ΔH₂ = - 12,258 KJ
Explanation:
Enthalpy:
Enthalpy is a property of a thermodynamic system. Enthalpy of a system is equal to the sum of internal energy of the system and presser times volume of the system.
The heat absorbes or releases in a closed system is the change of enthalpy of the system.
Given reactions are:
Reaction 1: C₃H₈(g)+5O₂(g)→ 3CO₂(g)+4H₂O, ΔH₁= - 2043 KJ
Reaction 2: 6C₃H₈(g)+30 O₂(g)→ 18 CO₂(g)+24 H₂O, ΔH₂=?
Take a look at reaction 1 and reaction 2, the only difference is that 1 molecule of C₃H₈ is combusted in reaction 1 and 6 molecules of C₃H₈ is combusted in reaction 2.
We can think the reaction 2 as occurring 6 different container and each containers contains 1 molecule of C₃H₈. The enthalpy is an extensive property. Total enthapy of the 6 containers is = 6×(-2043 KJ)
= - 12,258 KJ
∴ΔH₂ = - 12,258 KJ
The constant used for the absorption of heat by the sample in melting is
. Thus, option A is correct.
The chemical reaction has been defined as the energy in which the energy has been released or absorbed for the breaking of bonds in the reactants and the formation of product.
<h3>Constant for energy absorbed</h3>
The energy has been absorbed in the melting of the copper sample. Thus, the sample has been converted from the solid to the liquid state.
The change in energy with the conversion in solid and liquid state has been termed as heat of fusion.
The energy has been absorbed by the system, thus it has been marked with the positive sign.
Therefore,
has been the constant used for the absorption of heat by the sample in melting. Thus, option A is correct.
Learn more about melting sample, here:
brainly.com/question/8828503
42700 milliliters would be the answer...
Hope this helps!