Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
The
answer is:
glucose,
a polar organic compound
silver
nitrate, an ionic compound
<span>The two have net charges
that enable them to attract with water molecules. Water molecules are partly
charged because of the arrangement of electron clouds around the molecule. The oxygen
atom in the molecule is more electronegative
than the two hydrogens. Therefore water is able to
form electrostatic attraction forces with
the charged molecules</span>
I’m sorry I don’t understand if you can may you say it in English?
All of the following are examples of electric force except A. A Neuton pushing on another Neutron. Neutrons are subatomic particles that possess no electrical charge.
Answer:
Lava is hot liquid rock. When lava flows over solid ground, the solid ground beneath it increases in temperature. What happens to the molecules in the solid ground when the temperature is increasing? The energy of the molecules in the ground decreases.