These are the characteristics that apply:
- In a solution taste sour: which is consequence of the H+ concentration.
- Corrode metals: the H+ ion reacts with the metal producing a salt and water
-Produce hydronium ion in solution: as per the Bronsted - Lowry definition an acid is a substance that donates a proton, H+. This proton will react with H2O to form H3O+ (hydronium), as per this scheme:
HA + H2O --> A(-) + H3O(+)
In order to tell a river lock attendant that you wish to go through the lock, you should <span>sound one prolonged blast followed by one short blast.
You should wait about 400 feet away from the lock and wait for the flashing light signal that allows you to enter.
Also note that </span><span>commercial traffic always have the first priority in entering the locks.</span>
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
Answer:
4m/s^2
Explanation:
mass(m)=20 kg
force=80 N
acceleration (a)=?
Therefore,
Force = mass * acceleration
80 = 20*a
a=80/20
=4m/s^2
Chemical Reaction between metal oxide and water solution