Answer:
0.0953125 N
Explanation:
Applying,
F = kq'q/r²................. Equation 1
Where F = electrostatic force, k = coulomb's constant, q' and q = first and second charge respectively, r = distance between the charge.
From the equation,
If both charges remain constant,
Therefore,
F = C/r²
C = Constant = product of the two charge(q' and q) and k
Fr² = F'r'²................ Equation 2
From the question,
Given: F = 6.10 N
Assume: r = x m, r' = 8x
Substitute these value into equation 2
6.1(x²) = F'(8x)²
F' = 6.1/64
F' = 0.0953125 N
Hence the new force will become 0.0953125 N
<span>The repelling of the support magnet decreases friction. is the answer you're looking for . :)
hope i helped - beanz</span>
Answer:

Explanation:
The time lag between the arrival of transverse waves and the arrival of the longitudinal waves is defined as:

Here d is the distance at which the earthquake take place and
is the velocity of the transverse waves and longitudinal waves respectively. Solving for d:

" 50 W " means " 50 Watts " or " 50 Joules per second ".
(500,002 J) / (50 J/sec) = <em>10,000.04 seconds</em>
(That's 2 hours 46 minutes 40.04 seconds.)
It would be kinetic energy. Let's say the book is weighs 10 Newtons you need to use a force of 10 Newtons to lift the book. In other words it's positive. As you move the book you're giving it energy. Namely potential energy which will turn to kinetic energy if you let it go. So you're changing it's position and energy.