Answer:
this pdf should help you out
Explanation:
Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min
Answer:
The current is
Explanation:
From the question we are told that
The radius of the loop is 
The earth's magnetic field is 
The number of turns is 
Generally the magnetic field generated by the current in the loop is mathematically represented as

Now for the earth's magnetic field to be canceled out the magnetic field generated by the loop must be equal to the magnetic field out the earth

=> 
Where
is the permeability of free space with value 

=> 

Answer: MOTION
Explanation:
motion is defined as the displacement of an object with respect to time relative to a stationary object (reference point). A good example of an object that can serve as a reference point includes: a tree or a building. The movement of a body at constant speed towards a particular direction at regular intervals of time can be determined and it's called uniform motion.
There are different types of motion, these includes: simple harmonic motion,
linear motion,
circular motion,
Brownian motion,
Rotatory motion