Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s
I believe the answer is free electrons
For #5 It's helpful to draw a free body diagram so you know which way the forces are acting on the block.
the weight mg is acting downwards, and you need to find the vertical and horizontal components of mg using sin and cosine. so do 15x9.8xsin40 which is the force. Assuming no friction, this is the only force acting on the block, as the forces on the vertical plane cancel out i.e the normal force and weight of the block.
after, just do F=ma And since you know F and m, solve for a.
Answer:
<em>Second option</em>
Explanation:
<u>Linear Momentum</u>
The linear momentum of an object of mass m and speed v is
P=mv
If two or more objects are interacting in the same axis, the total momentum is

Where the speeds must be signed according to a fixed reference
The images show a cart of mass 2m moves to the left with speed v since our reference is positive to the right

The second cart of mass m goes to the right at a speed v

The total momentum before the impact is

The total momentum after the collision is negative, both carts will join and go to the left side
The first option shows both carts with the same momentum before the collision and therefore, zero momentum after. It's not correct as we have already proven
The third option shows the 2m cart has a positive greater momentum than the other one. We have proven the 2m car has negative momentum. This option is not correct either
The fourth option shows the two carts keep separated after the collision, which contradicts the condition of the question regarding "they hook together".
The second option is the correct one because the mass
has a negative momentum and then the sum of both masses keeps being negative