Answer:
The speed does it head toward the goal = 41.87 
Explanation:
Mass = 0.107 kg
Initial velocity ( u ) = 0
Force (F) = 28 N
Time = 0.16 sec
From newton's second law, Force = mass × acceleration
⇒ F = m × a
⇒ 28 = 0.107 × a
⇒ a = 261.7
--------- (1)
This is the value of acceleration.
Final speed of the mass is calculated by the equation V = U + at
⇒ U = 0 because mass in in rest position at start.
⇒ V = a t
Put the values of acceleration and time in above formula we get
⇒ V = 261.7 × 0.16
⇒ V = 41.87 
Therefore the speed does it head toward the goal = 41.87 
Answer:
The mass is 
Explanation:
From the question we are told that
The extension of the rod is 
The area is 
The density increase as follows 
The equation 
at

So

=> 
So at
, 
So

=> 
Now

![m = 8 [{2.5 +\frac{ 1.27x^2}{2} } ]\left | 13} \atop {0}} \right.](https://tex.z-dn.net/?f=m%20%20%3D%20%208%20%20%20%5B%7B2.5%20%2B%5Cfrac%7B%201.27x%5E2%7D%7B2%7D%20%7D%20%5D%5Cleft%20%20%7C%2013%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![m = 8 [{2.5 +\frac{ 1.27(13)^2}{2} } ]](https://tex.z-dn.net/?f=m%20%20%3D%20%208%20%20%20%5B%7B2.5%20%2B%5Cfrac%7B%201.27%2813%29%5E2%7D%7B2%7D%20%7D%20%5D)


Answer:
By a factor of 1/4.
Explanation:
The impulse force that applies to an object undergoing rapid deceleration just before coming to a stop on the ground is given by the following formula,
in which
,
represent the change in momentum and the time taken for that change.
If one increases the time that is taken for the momentum change (which remains constant for this situation) by a factor 4 and if that new force is represented by
, the following manipulation confirms the answer to this question.
![\begin{aligned}\\\small F_1 &=\small \frac{\Delta (mV)}{4\Delta t}\\\\&=\small \frac{1}{4}\times\bigg[\frac{\Delta (mV)}{\Delta t}\bigg]\\\\&=\small \frac{1}{4}F\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5C%5C%5Csmall%20F_1%20%26%3D%5Csmall%20%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B4%5CDelta%20t%7D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7D%5Ctimes%5Cbigg%5B%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B%5CDelta%20t%7D%5Cbigg%5D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7DF%5Cend%7Baligned%7D)
Here
is the force that was applied to the object previously.
#SPJ4
Taking the distance of Tarzan from the ground before and after he makes the swing:
Ho (initial height) = L(1 - cos45) = 20 (1 - 0.707) = 5.86 meters
Hf (final height) = L(1 - cos30) = 20 (1 - 0.866<span>) = 2.68 meters
</span>
Difference in height = 5.86 - 2.68 = 3.18 meters
PE = KE
mgh = (1/2)mv^2
Solving for v:
v = sqrt (2*g*h)
v = sqrt (2*9.8*3.18)
v = 7.89 m/s
With Tarzan going that fast, it is likely that he will knock Jane off.
Answer:
False
Explanation:
A boat can go reverse like a car