Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
I totally agree but, in my opinion its because of the government and what the state has control over. Teacher have little control over it.
Answer:
y=8
Explanation:
every time you multiply x by 3 you divide y by 3.
x=2, multiply it by 3: x=6
y=24, divide it by 3: y=8
Answer:
<span>C) Both have rocky composition
Explanation
Earth has rocks. Many many rocks.
It is made of many type of rocks such as </span>sedimentary<span>, </span>metamorphic<span>, and </span><span>igneous rocks. and guess what a asteroid is? That is right ! A ROCK.
</span>A asteroid is normally made of <span>stony silicate rocks , but not always , sometimes I can be diamonds!! The point is , they both are rocks floating around space.</span><span>
</span>
The tennis ball lands at a point 40.4 m from the base of the building.
The tennis ball is projected with a horizontal velocity <em>u</em> from a window, which is at a height <em>y</em> from the ground. The ball lands at a distance <em>x</em> from the base of the building. Let the ball take a time <em>t</em> to reach the ground. In the time <em>t</em> ,the ball falls a vertical distance <em>y</em> and also travel a horizontal distance <em>x</em>.
The initial vertical velocity of the ball is zero, since the ball is projected in the horizontal direction. The ball falls down under the action of gravitational force.
Thus, use the equation of motion,

rewrite the expression for <em>t</em> and calculate the value of <em>t</em> using 9.81 m/s²for <em>g</em> and 500 m for <em>y</em>.

The horizontal distance <em>x</em> is traveled using the constant velocity <em>u </em>since no force acts on the ball in the horizontal direction.
Therefore,

Substitute 4 m/s for <em>u</em> and 10.096 s for <em>t</em>

Thus, the ball lands at a point 40.4 m from the base of the building.