<u>Answer:</u> The molarity of solution will be 0.049 M
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:

We are given:
Given mass of sodium chloride = 10 g
Molar mass of sodium chloride = 58.44 g/mol
Volume of solution = 3.50 L
Putting values in above equation:

Hence, the molarity of solution will be 0.049 M
The generalized rate expression may be written as:
r = k[A]ᵃ[B]ᵇ
We may determine the order with respect to B by observing the change in rate when the concentration of B is changed. This can be done by comparing the first two runs of the experiment, where the concentration of A is constant but the concentration of B is doubled. Upon doubling the concentration of B, we see that the rate also doubles. Therefore, the order with respect to concentration of B is 1.
The same can be done to determine the concentration with respect to A. The rate increases 4 times between the second and third trial in which the concentration of B is constant, but that of A is doubled. We find that the order with respect to is 2. The rate expression is:
r = k[A]²[B]
Answer:
36 valence electrons
Explanation:
Given CBr₂COHNH₂ => Br₂C = C - O - H
|
H - N - H
#Valence e⁻s = 2Br + 2C + 3H + 1N + 1O = 2(7) + 2(4) + 3(1) + 1(5) + 1(6)
= 14 + 8 + 3 + 5 + 6 = 36 valence electrons
Addendum ...
#Bonded e⁻s = 2Br + 2C + 3H + 1N + 1O = 2(8) + 2(8) + 3(2) + 1(8) + 1(8)
= 16 + 16 + 6 + 8 + 8 = 54 bonded electrons
#Covalent Bonds = #Valence e⁻ - #Bonded e⁻ / 2 = (54 - 36) / 2 = 9 cov. bonds.
Answer:Melting can create steam, kind of like a nukeular plant exept no nukulear rods