Answer: b
Explanation:
By adding heat you are adding more energy
Answer:
There were originally 8 atoms of Potassium-40.
Explanation:
The half-life of a radioactive material is the time taken for half the original material to decay or the time required for a quantity of the radioactive substance to reduce to half of its initial value.
If the original material formed without any Argon-40, it means that the atoms originally present were Potassium-40 atoms.
Presently, there are 7 Argon-40 atoms for every 1 of Potassium-40, we can deduce the number of half-lifes the Potassium-40 has undergone as follows :
After one half-life, (1/2) there will be one Potassium-40 atom for every Argon-40 atom.
After a second half life, 1/2 × 1/2 = 1/4: there will be one Potassium-40 atom for every three atoms of Argon-40.
After a third half-life, 1/4 × 1/2 = 1/8: there will be one Potassium-40 atom for every 7 atoms of Argon-40.
Since there are 1/8 atoms of Potassium-40 presently, there were originally 8 atoms of Potassium-40.
If it is a multiple answer question, then "The areas with the rivers will have the most plants" and " The areas with ponds will have more animals" would be your best answers. If it is a single answer question, then it would be best to go with the answer with 'The areas with the rivers will have more plant life",. The reason being, is that when there is a lot of water flow, there is more plant life around.
Answer:
Explanation:
a )
3NO₂(g) + H₂O(l) — -→ 2HNO₃(aq) + NO(g)
3 x 46 g 18 g 2 x 63 g 30 g
138 g of NO₂ requires 18 g of H₂O
28 g of NO₂ requires ( 18 / 138) x 28
= 3.65 g of H₂O.
b )
18 g of H₂O produces 30 g of NO gas
15.8 g of H₂O produces ( 30/18 ) x 15.8
= 26.33 g of NO gas .
c )
138 g of NO₂ produces 126 g of HNO₃
8.25 g of NO₂ produces (126 / 138 ) x 8.25
= 7.53 g of HNO₃
The six carbon atoms form a perfectly regular hexagon. All of the carbon-carbon bonds have exactly the same lengths - somewhere between single and double bonds. There are delocalized electrons above and below the plane of the ring, which makes benzene particularly stable.