<h3>
Answer:</h3>
91.2 g Mn
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.00 × 10²⁴ atoms Mn
<u>Step 2: Identify Conversions</u>
Avogadro's Numer
[PT] Molar Mass of Mn - 54.94 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
91.2321 g Mn ≈ 91.2 g Mn
Answer:
An Arrhenius Base
Explanation:
The definition of this is a base that is a hydroxide ion donor.
A: C₆H₁₂O₆ + 6H₂O + 6O₂
6CO₂ + 12H₂O = C₆H₁₂O₆ + 6H₂O + 6O₂
Answer:
d. there is a net consumption of water and carbon dioxide
Explanation:
Photosynthesis, is the process whereby light energy is transform into chemical energy by
green plants and other photosynthesis capable organisms . In the process of photosynthesis, light energy is captured by green plants which it uses to convert carbon dioxide water, and minerals into energy-rich organic compounds and oxygen is evolved as a byproduct.
It is a chemical reaction taking place inside a plant, resulting in the production of food for the survival of the plant.
Photosynthesis takes place in the leaves of a plant in the presence of sunlight and.