Answer:
D
Explanation:
The answer is Niels Bohr's planetary model, the difference between this model and all of the other models is that the Bohr's PM Is more of layers of
Nucleus - Protons and Neutrons
Electron Orbital - Period 1 Elements
2 electrons
Electron Orbital - Period 2 Elements
8 electrons
Electron Orbital - Period 3 Elements
8 electrons
If that made sense-
<span>When an electron is hit by a photon of lights,it absorbs the quanta of energy the photon was carrying and moves to a higher energy state.Electrons therefore have to jump around within the atom as they either gain or lose energy.</span>
Answer:
It is sensible heat- the amount of heat absorbed by 1 kg of water when heated at a constant pressure from freezing point 0 degree Celsius to the temperature of formation of steam i.e. saturation temperature
So it is given as - mass× specific heat × rise in temperature
i.e. 4.2 × T
4.2 × (100–0)
So it is 420kj
If you ask how much quantity of heat is required to convert 1 kg of ice into vapour then you have to add latent heat of fusion that is 336 kj/kg and latent heat of vaporization 2257 kj/kg (these two process occur at constant temperature so need to add rise in tempeature)
So it will be
Q= 1×336 + 1× 4.18 ×100 + 1× 2257
Q = 3011 kj
Or 3.1 Mj
Hope you got this!!!!!!
Answer:
∑F = 10.2 N
Explanation:
We have:
Initial velocity: 0.5 m/s
Final velocity: 3 m/s
Time: 1.5 s
We have all of the components needed to calculate acceleration. Let's do that, shall we?
a = vf-vo/t
a = 2.5/1.5
a = 1.7
/
Now, look at the Net Force equation:
∑F = ma
Plug in the variables, to get:
∑F = (6)(1.7)
∑F = 10.2 N (You can round this according to significant digits)