Answer:
Bottom of the circle.
Explanation:
At the top of the circle the tension and the weight contribute on being the centripetal force, at the middle of the circle only the tension contributes on being the centripetal force (the weight being perpendicular to it), while <u>at the bottom</u> of the circle the tension contributes on being the centripetal force (as always) <em>but the weight against to it</em>, so here is where the tension must be greater to allow the same centripetal force as the other cases, thus here is where the string will break.
Answer:
A. a rigorously tested explanation
Explanation:
- B. and D. are out - theories are not opinionated, they are factual
- C. is out - not all theories are mathematical
- A. is the best choice
When the velocity of an object changes, it is acted upon by a force
<span>The current is 6 miles per hour.
Let's create a few equations:
Traveling with the current:
(18 + c)*t = 16
Traveling against the current:
(18 - c)*t = 8
Let's multiply the 2nd equation by 2
(18 - c)*t*2 = 16
Now subtract the 1st equation from the equation we just doubled.
(18 - c)*t*2 = 16
(18 + c)*t = 16
(18 - c)*t*2 - (18 + c)*t = 0
Divide both sides by t
(18 - c)*2 - (18 + c) = 0
Now solve for c
(18 - c)*2 - (18 + c) = 0
36 - 2c - 18 - c = 0
36 - 2c - 18 - c = 0
18 - 3c = 0
18 = 3c
6 = c
So the current is 6 mph.
Let's verify that.
(18 + 6)*t = 16
24*t = 16
t = 16/24 = 2/3
(18 - 6)*t = 8
12*t = 8
t = 8/12 = 2/3
And it's verified.</span>