The ampere (A) is a basic SI unit consisting of the amount of electric charge or number of electrons that pass a point in a electrical circuit in one second. The volt (V) is the electrical potential causing electrons to move through a wire. It is a joule of energy per coulomb of charge.
Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!
Hi,
Recall the formula V=d/t, where V stands for velocity or speed, d stands for distance and t stands for time. By substituting your values you get: V=50.0km/2.5h, which equals to 20km/h.
Answer:
The lid becomes tighter
It becomes tighter because metals have a lower heat capacity than glass meaning their temperature drops (or increases) much faster than glass for the same energy change. So in this example, the metal will contract faster than the glass causing it to be more tighter around the glass.
Answer:
v = 5.75 x 10⁶ m/s
Explanation:
The radius (r) of the circular orbit taken by a charged particle is related to its speed perpendicular to a magnetic field of strength B, and is given by
r =
--------------(i)
Where,
q = charge of the particle
m = mass of the particle
Making v subject of the formula in equation (i) above gives
v =
-------------------(ii)
Given;
r = 20cm = 0.2m
B = 0.3T
v = unknown
q = charge of proton = 1.6 x 10⁻¹⁹ C
m = mass of the proton = 1.67 x 10⁻²⁷kg
Substitute the values of m, q, B and r into equation (ii) above to get;
v = 
Solving for v gives:
v = 5.75 x 10⁶ m/s
Therefore, the velocity of the proton is 5.75 x 10⁶ m/s