1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
6

Which one of the following statements is not a characteristic of a plane mirror?

Physics
1 answer:
OleMash [197]3 years ago
4 0

Answer:

C) false. The image is formed by the prolongation of the rays, so it is VIRTUAL

Explanation:

Let's review each of the statements

A) True. The image is the same size as the object in a flat mirror, m = 1

B) True. The rays are not inverted, so the right images

C) false. The image is formed by the prolongation of the rays, so it is VIRTUAL

D) True. Flat mirrors reverse left and right

E) True. When using trigonometry the angles are equal, therefore two triangles formed have the same leg, and the distance to the object and the image are equal

You might be interested in
What are the body parts to this figure? Any of the body parts. (Please)
vlabodo [156]
1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges
3 0
3 years ago
A ball is thrown straight up. What are the velocity and acceleration of the ball at the highest point in its path?
zubka84 [21]

Answer:

b. v = 0, a = 9.8 m/s² down.

Explanation:

Hi there!

The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?

Let´s take a look at the height function:

h(t) = h0 + v0 · t + 1/2 g · t²

Where

h0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity

Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.

Another way to see it (without calculus):

When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.

8 0
3 years ago
Two identical small metal spheres with q1 > 0 and |q1| > |q2| attract each other with a force of magnitude 72.1 mN when se
Brrunno [24]

1) +2.19\mu C

The electrostatic force between two charges is given by

F=k\frac{q_1 q_2}{r^2} (1)

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the charges

When the two spheres are brought in contact with each other, the charge equally redistribute among the two spheres, such that each sphere will have a charge of

\frac{Q}{2}

where Q is the total charge between the two spheres.

So we can actually rewrite the force as

F=k\frac{(\frac{Q}{2})^2}{r^2}

And since we know that

r = 1.41 m (distance between the spheres)

F= 21.63 mN = 0.02163 N

(the sign is positive since the charges repel each other)

We can solve the equation for Q:

Q=2\sqrt{\frac{Fr^2}{k}}=2\sqrt{\frac{(0.02163)(1.41)^2}{8.98755\cdot 10^9}}}=4.37\cdot 10^{-6} C

So, the final charge on the sphere on the right is

\frac{Q}{2}=\frac{4.37\cdot 10^{-6} C}{2}=2.19\cdot 10^{-6}C=+2.19\mu C

2) q_1 = +6.70 \mu C

Now we know the total charge initially on the two spheres. Moreover, at the beginning we know that

F = -72.1 mN = -0.0721 N (we put a negative sign since the force is attractive, which means that the charges have opposite signs)

r = 1.41 m is the separation between the charges

And also,

q_2 = Q-q_1

So we can rewrite eq.(1) as

F=k \frac{q_1 (Q-q_1)}{r^2}

Solving for q1,

Fr^2=k (q_1 Q-q_1^2})\\kq_1^2 -kQ q_1 +Fr^2 = 0

Since Q=4.37\cdot 10^{-6} C, we can substituting all numbers into the equation:

8.98755\cdot 10^9 q_1^2 -3.93\cdot 10^4 q_1 -0.141 = 0

which gives two solutions:

q_1 = 6.70\cdot 10^{-6} C\\q_2 = -2.34\cdot 10^{-6} C

Which correspond to the values of the two charges. Therefore, the initial charge q1 on the first sphere is

q_1 = +6.70 \mu C

8 0
3 years ago
The vapor pressure of benzene, C6H6, is 40.1 mmHg at 7.6°C. What is its vapor pressure at 60.6°C? The molar heat of vaporization
ANEK [815]

Answer:

The vapor pressure at 60.6°C is 330.89 mmHg

Explanation:

Applying Clausius Clapeyron Equation

ln(\frac{P_2}{P_1}) = \frac{\delta H}{R}[\frac{1}{T_1}- \frac{1}{T_2}]

Where;

P₂ is the final vapor pressure of benzene = ?

P₁ is the initial vapor pressure of benzene = 40.1 mmHg

T₂ is the final temperature of benzene = 60.6°C = 333.6 K

T₁ is the initial temperature of benzene = 7.6°C = 280.6 K

ΔH is the molar heat of vaporization of benzene = 31.0 kJ/mol

R is gas rate = 8.314 J/mol.k

ln(\frac{P_2}{40.1}) = \frac{31,000}{8.314}[\frac{1}{280.6}- \frac{1}{333.6}]\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.003564 - 0.002998)\\\\ln(\frac{P_2}{40.1}) = 3728.65  (0.000566)\\\\ln(\frac{P_2}{40.1}) = 2.1104\\\\\frac{P_2}{40.1} = e^{2.1104}\\\\\frac{P_2}{40.1} = 8.2515\\\\P_2 = (40.1*8.2515)mmHg = 330.89 mmHg

Therefore, the vapor pressure at 60.6°C is 330.89 mmHg

6 0
3 years ago
Read 2 more answers
The period of a sound wave coming from an instrument is 0. 002 seconds. What is the frequency of the sound? Hz.
Pie

The period is the time taken by the wave to complete an oscillation. The frequency of the given sound is 500 Hz.

<h2>Period:</h2>

It is the time taken by the wave to complete an oscillation. The frequency is inversely proportional to the time:

f = \dfrac 1T

Where,

f- frequency

T - period = 0.002 s

Put the value in the equation,

f = \dfrac 1{0.002}\\\\f = 500\rm \  Hz

Therefore, the frequency of the given sound is 500 Hz.

Learn more about Period:

brainly.com/question/842349

5 0
2 years ago
Other questions:
  • Explain why a magnet sitting next to a wire does not induce a current in a wire
    12·1 answer
  • Are waves matter or not?
    8·1 answer
  • Which of the following biomes might be found at a latitude of 33° South?
    11·1 answer
  • On a winter day with a temperature of -10°C, 500g of snow (water ice) is brought inside where the temperature is 18 °C. The snow
    13·1 answer
  • We are usually not aware of the electric force acting between two everyday objects because
    13·2 answers
  • 2 Points<br> Mechanical energy is the ___<br> of kinetic energy and potential energy.
    9·2 answers
  • A 2.0-kg ball with an initial velocity of (4i + 3j) m/s collides with a wall and rebounds with a velocity of (–4i + 3j) m/s. Wha
    14·1 answer
  • The Dodgers are up at bat during the World Series. Joc Pederson swings his baseball bat and it collides perfectly with the baseb
    10·1 answer
  • Is Throwing a baseball and a football Newton's 2nd law of motion ?
    5·2 answers
  • calculate the pressure exerted on the floor when a elephant who weighs 6000N stands on 1 foot which has a area of 20m
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!