Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
Explanation:
Magnet: It has two poles: South pole and North pole.
Magnetic field lines are stronger near the poles of the magnet.
Same poles repel each other. There is a magnetic force of repulsion between the same poles. North- North poles repel each other.
Unlike poles attract each other. There is magnetic force of attraction between the opposite poles. South- North poles attract each other.
Mono poles cannot exist.
From the given statements, the magnetic poles are described by:
A north pole must exist with a south pole.
Two south poles placed near each other will repel each other.
A north pole and a south pole placed near each other will attract each other.
The age of a man whose normal blood pressure measures 123 mm of hg
9 years
<h3>What is Quadratic equation ?</h3>
A quadratic equation as an equation of degree 2, meaning that the highest exponent of this function is 2. The standard form of a quadratic equation is y = a
+ bx + c, where a, b, and c are numbers and a cannot be 0
P(A) = 0.006
- 0.02a + 120
123 = 0.006- 0.02a + 120
0=0.006
- 0.02a - 3
you can use the quadratic equation formula to solve for the man's age.
A = (-b ± (
) ) / (2a)
A = (0.02 ±
/ (2*0.006)
A = (0.02 ±
) / 0.012
A = 9 , -5.67
Age of the man will be 9 years
To learn more about quadratic equation here
brainly.com/question/17177510?referrer=searchResults
#SPJ4
Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°
Answer: Current needed, mA 20 Voltage needed, V AC 6
Explanation: An electric gradient (or field) can exist that is analogous to the situation described above for step and touch potentials. The situation is more complex to analyze in the water because a person in the water assumes different postures and orientations in 3 dimensions (up, down, and sideways—north, south, east, and west). The transthoracic and translimb voltages will vary as the person moves in relation to the orientation (direction) of the electric field.