It changes the rate of growth that cells usually undergo.
Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.
Answer:
11
Explanation:
The atomic number = number of protons. The mass number (23) = sum of number of neutrons and protons. Since you know the mass number is 23 and it has 12 neutrons, 23-12 gives you 11 protons, so its atomic number is 11.
If you want additional help in chemistry or another subject for FREE, check out growthinyouth.org
Answer:
0.721 g/L
Explanation:
Ideal gas equation ->PV= nRT ; n= mass (m)/ molar mass (M);
densitiy= mass (m)/ volume (V)
PV= (m/M)*RT -> PVM= mRT -> PM/RT= m/V -> PM/RT=d
We need to put in SI units
105 Kpa= 1.04 atm
25°C= 298 K
d= (1.04 atm * 17 g/ mol)/(0.0821 * 298 K) = 0.721 g/L