Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.
Answer:
PV=nRt
Therefore n(number of moles)=PV/RT
=>(0.49×3.80)/(0.08206×320)
Therefore Number of moles is = 0.071mols
Explanation: By using the Real gas equation..
PV=NRT .
We can solve for the number of moles of Ar by making N the subject..
Always make sure you pressure is In atm, your Volume is in Litres and temperature in degree Kelvin.
Also Recall the universal gas constant R used in this type of questions which is 0.08206.
Hence l, by making N the subject we get our answer as
Answer:
7.2L
Explanation:
The details of the solution are found in the answer. The balanced stoichiometric equation is first written and the volumes on the left and right hand sides dilligiently compared and calculations are made based on simple comparisons as show.
Thermodynamics, Nuclear Physics, Quantum Physics, Astronomy and Astrophysics
The amount of matter in an object is consisted to be MASS .