Answer:
We need 3910.5 joules of energy
Explanation:
Step 1: Data given
Mass of aluminium = 110 grams
Initial temperature = 52.0 °C
Final temperature = 91.5 °C
Specific heat of aluminium = 0.900 J/g°C
Step 2: Calculate energy required
Q = m*c*ΔT
⇒with Q = the energy required = TO BE DETERMINED
⇒with m = the mass of aluminium = 110 grams
⇒with c = the specific heat of aluminium = 0.900 J/g°C
⇒with ΔT = the change in temperature = T2 - T1 = 91.5 °C - 52.0 °C = 39.5 °C
Q = 110 grams * 0.900 J/g°C * 39.5
Q = 3910.5 J
We need 3910.5 joules of energy
Answer:
The nitrogens are both sp3 hybridized. Their bonds are formed by sp overlaps. The carbon and oxygen are sp2 hybridized. The double bond with oxygen is produced by a sp2 overlap to form the sigma component and a probital overlap to form the pi component. The bonds with hydrogen are formed by sp2 overlaps.
Explanation:
<h3><u>Answer;</u></h3>
Phloem
<h3><u>Explanation;</u></h3>
- <u>Club moss</u> plant belongs to the the family Lycopodiaceae, Lycophyte includes any spore-bearing vascular plant.
- <u>Liverworts</u> on the other hand are bryophytes which belongs to the division bryophyta. Bryophytes are small, non-vascular plants which includes mosses, hornworts and liverworts.
- <em><u>Vascular plants contain vascular tissues which play an important role of transportation in plants. </u></em>The major vascular tissues are phloem and xylem. <em><u>Non-vascular plants</u></em> on the other hand lacks the vascular tissues for transportation of substances.