The amount of the solute is constant during dilution. So the mole number of HCl is 2*1.5=3 mole. The volume of HCl stock is 3/12=0.25 L. So using 0.25 L stock solution and dilute to 2.0 L.
Answer:
The partial pressure of the other gases is 0.009 atm
Explanation:
Step 1: Data given
Air is about 78.0% nitrogen molecules and 21.0% oxygen molecules and 1% of other gases.
The atmospheric pressure = 0.90 atm
Step 2: Calculate mol fraction
If wehave 100 moles of air, 78 moles will be nitrogen,
21 moles will be oxygen, and 1 mol will be other gases.
Mol fraction = 1/100 = 0.01
Step 3: Calculate the partial pressure of the other gases
Pgas = Xgas * Ptotal
⇒ Pgas = the partial pressure = ?
⇒ Xgas = the mol fraction of the gas = 0.01
⇒Ptotal = the total pressure of the pressure = 0.90 atm
Pgas = 0.01 * 0.90 atm
Pgas = 0.009 atm
The partial pressure of the other gases is 0.009 atm
The number of bacteria is given by:
N(t) = N(o) x 2ⁿ
Where N(t) is the number after n hours have passed and N(o) is the original number which is 15.
The number grown in the 12th hour is the difference in the number after the 11th and the 12th hour. Thus:
15 x 2¹² - 15 x 2¹¹
= 30,720 bacteria
The m/z and relative abundance of the ions contributed to the peak at 21.876 min. The relative abundance will be 21.876%.
<h3>
What is relative abundance?</h3>
- The proportion of atoms with a particular atomic mass present in an element sample taken from a naturally occurring sample is known as the relative abundance of an isotope.
- When the relative abundances of an element's isotopes are multiplied by their atomic masses and the results are added up, the result is the element's average atomic mass, which is a weighted average.
- Chemists often divide the number of atoms in a particular isotope by the sum of the atoms in all the isotopes of that element, then multiply the result by 100 to determine the percent abundance of each isotope in a sample of that element.
To learn more about relative abundance with the given link
brainly.com/question/1594226
#SPJ4
It is essential for accurate results that the correct volume of blood is sampled to achieve a correct concentration (and dilution, if liquid heparin is used), and that blood and anticoagulant are well mixed immediately after sampling.