Answer:
a warm air mass is caught between two colder air masses. The colder air moves under the warmer air pushing it up and then moves forward until it meets a mass that is warmer and pushes it up too.
Answer: See below
Explanation:
1. To calculate the mass, you know you can convert by using molar mass. Since mass is in grams, we can use molar mass to convert moles to grams. This calls for the Ideal Gas Law.
Ideal Gas Law: PV=nRT
We manipulate the equation so that we are solving for moles, then convert moles to grams.
n=PV/RT
P= 100 kPa
V= 0.831 L
R= 8.31 kPa*L/mol*K
T= 27°C+273= 300 K
Now that we have our values listed, we can plug in to find moles.


We use the molar mass of NO₂ to find grams.

The mass is 1.52 g.
2. To calculate the temperature, we need to use the Ideal Gas Law.
Ideal Gas Law: PV=nRT
We can manipulate the equation so that we are solving for temperature.
T=PV/nR
P= 700.0 kPa
V= 33.2 L
R= 8.31 kPa*L/mol*K
n= 70 mol
Now that we have our values, we can plug in and solve for temperature.


The temperature is 40 K.
Is it milk and nitrogen? Hope this helps!
Answer:
A circle graph, or a pie chart, is used to visualize information and data. A circle graph is usually used to easily show the results of an investigation in a proportional manner. Bar graphs are used to compare things between different groups or to track changes over time. However, when trying to measure change over time, bar graphs are best when the changes are larger.
Explanation:
In short, bar graphs are better to keep track of data over long periods of time, and circle graphs are better when you are trying to visualize a specific set of data.
Excess reactant : Na
NaCl produced : = 16.497 g
<h3>Further explanation</h3>
Given
Reaction(balanced)
2Na + Cl₂⇒ 2NaCl
20 g Na
10 g Cl₂
Required
Excess reactant
NaCl produced
Solution
mol Na(Ar = 23 g/mol) :
= 20 : 23 = 0.87
mol Cl₂(MW=71 g/mol):
= 10 : 71 g/mol = 0.141
mol : coefficient :
Na = 0.87 : 2 = 0.435
Cl₂ = 0.141 : 1 = 0.141
Limiting reactant : Cl₂(smaller ratio)
Excess reactant : Na
Mol NaCl based on mol Cl₂, so mol NaCl :
= 2/1 x mol Cl₂
= 2/1 x 0.141
= 0.282
Mass NaCl :
= 0.282 x 58.5 g/mol
= 16.497 g