Answer:
The can mass is 0,00359 kg or 3,59 g
Explanation:
1. Relevant Data:
Steel thickness= 0.13 mm or 0.013 mm
h=11 cm
d=6 cm
ρ=800 kg/m^3
2. Calculate mass from densisty equation:
, then 
We need to estimate the volume of the can to calculate the mass.
3. Estimate volume using differentials:
Cylinder volume equation is:

Considering that the can is an object with a hole inside, then we need to estimate the real volume of the sheet of steel.
Using differentials we have:

Then, we could say that 
Replacing the values of d, h and dD, we obtain:


4. Calculate the mass
Convert volume unit into 

Calculate mass



Answer:
It is longer
Explanation:
According to the theory of special relativity, moving clocks run slower. So, the construction worker moving at a constant speed observers a time much longer than the time I observe since I am stationary. If t is the time observed by me and v is the speed of the construction worker, then, the time observed by the construction worker, t' is given by
t' = t/√[1 - (v/c)²] where c = speed of light
So, the construction worker reports a longer time interval than me since his time runs slower.
Answer:
the minimum value of the coefficient of static friction between the ground and the cheetah's feet is 1.94
Explanation:
Given that ;
the top speed of Cheetahs is almost 60 mph
In cornering abilities ; the maximum centripetal acceleration of a cheetah was measured to be = 19 m/s^2
The objective of this question is to determine the what minimum value of the coefficient of static friction between the ground and the cheetah's feet is necessary to provide this acceleration?
From the knowledge of Newton's Law;
we knew that ;
Force F = mass m × acceleration a
Also;
The net force
= frictional force 
so we can say that;
m×a = 
where;
the coefficient of static friction
is:



= 1.94
Hence; the minimum value of the coefficient of static friction between the ground and the cheetah's feet is 1.94
The raising and lifting the ball by kicking is a B) Scoop