”Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A.”
I would think that then the answer is B because the ball would have the opposing force to your hand.
Answer:
Angular momentum = 0.7 kg.m²/s
Angular velocity = 583.3 rad/s
Explanation:
1. The torque τ is related to the angular momentum L by the relation
τ = ΔL/Δt
ΔL = τΔt
τ = 10 N. m
Δt = 70 ms = 70 × 10⁻³s
ΔL = (10 N. m) × (70 × 10⁻³s) = 700 × 10⁻³ kg.m²/s = 0.7 kg.m²/s
2. The rotational inertia I relates the angular momentum L to the angular velocity w
L = Iw
w = L/I
L = 0.7 kg.m²/s
I = 1.2 × 10⁻³ kg.m²
w = (0.7 kg.m²/s)/(1.2 × 10⁻³ kg.m²) = 583.3 rad/s
Answer: B>A=D>C
Explanation:
Kinetic Energy is the product of mass and square of the velocity
For Jogger A

For Jogger B

For Jogger C

For Jogger D

Kinetic Energy of Joggers in increasing order
B>A=D>C
The drag force acting on the rocket is 80N.
<h3>Give an explanation of drag force?</h3>
The divergence in velocity between the fluid and the item, also known as drag, exerts a force on it. Between the liquid and the solid object, there should be motion. Drag is absent in the absence of motion.
The air molecules are more compressed (pushed together) on the surfaces that are facing the front while being more dispersed (spread out) on the surfaces facing the back. Turbulent flow, which occurs when air layers split from the surface and start to swirl, is what causes this.
The drag force acting on the rocket F = ma
Given,
m = 4kg, a = 20ftm/s²
Substituting m and a values in the above formula,
The drag force acting on the rocket F = 4×20
The drag force acting on the rocket F = 80N.
To know more about drag force visit:
brainly.com/question/15144984
#SPJ4
The correct answer to the question is 130.4 N.
CALCULATION;
The mass of the bullet is given as m = 28 gram = 0. 028 kg.
The initial velocity of the bullet u = 55 m/s
The final velocity of the bullet v = 18 m/s.
The distance covered by the bullet through the sand bag s = 29 cm.
= 0.29 m
Let the acceleration of the bullet is a .
From equation of kinematics, we know that-

⇒ 


The negative sign is used due to the fact that force is opposing in nature. Its velocity is decreasing with time.
From Newton's second law of motion, we know that net force on a body is equal to the product of mass with acceleration.
Mathematically F = ma.
Hence, the frictional force exerted on the bullet is calculated as -
F = m × a
= 0.028 × (-4656.897) N
= -130.4 N [ANS]
Here, N ( newton) stands for the unit of force.