<u>Answer: </u>The correct answer is Option D.
<u>Explanation:</u>
Unstable isotopes are defined as the isotopes which have excess of neutrons as compared to the stable form of the nucleus of an atom.
These isotopes attain stability by undergoing a spontaneous nuclear decay. The isotopes which are unstable have another name and are known as radioactive isotopes or radioisotopes.
These isotopes undergoes decay by 4 processes: Alpha decay, beta decay, gamma emission and positron decay.
Hence, the correct answer is option D.
Answer: 44,8 l. of CO2 and 72 g. of water will be produced
Explanation:
Chemical is the answer to the question, but nuclear could also be a valid one since it is nearly impossible to reverse that.
Answer:
Regional metamorphic rocks form from other rocks (protoliths) by changes in mineralogy and texture in response to changing physical conditions (temperature, lithostatic pressure, and, in most cases, shear stress). Regional metamorphism occurs over broad areas in the lithosphere, possibly influenced by the heat supply. Regional metamorphic rock results from regional metamorphism and usually develops a flaky texture. These changes are essentially solid-state reactions, but very often a fluid phase is present, either participating in the reaction or as a reaction medium. Many regional metamorphic rocks have a chemical composition that is very similar to that of their sedimentary or igneous precursors, with the exception of removal or addition of volatiles (mainly H2O and CO2). This type of behavior is termed isochemical metamorphism. Metamorphism may also take place as a result of a change in chemical environment; this may occur by transport of elements between chemically contrasting rock types (e.g., formation of calc-silicate minerals at a quartzite–marble contact) or by circulation of fluids that dissolve some substances and precipitate others. This process of significant chemical change during metamorphism is known as allo-chemical metamorphism or metasomatism, and rocks formed in this manner are metasomatic rocks. Metasomatism is, however, mostly of local significance, and the total volume of metasomatic rocks in regional metamorphic terranes is rather minor. The distinction between metasomatism and is chemical metamorphism is also a matter of scale. On the scale of individual grains, mass transport takes place during all phase transformations; on the scale of a thin section, it is probably the rule for regional metamorphism; on the scale of a hand (sized) specimen, it can be observed frequently; and on a larger scale, it is the exception.
Hope this Helps!
Answer:
period 6
Explanation:
If the lanthanides were inserted into the periodic table, they would go into periodic 6.
Their atomic number is between 57 - 71 from element lanthanum to lutetium.
- The elements in this period are 15 in number.
- They are also know as elements in the f-block.
The elements that makes up the series are:
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium