The volume that will occupy at STP is calculated as follows
by use of ideal gas equation
that is PV=nRT where n is number of moles calculate number of moles
n= PV/RT
p=0.75 atm
V=6.0 L
R = 0.0821 L.atm/k.mol
T= 35 +273= 308k
n=?
n= (o.75 atm x 6.0 L)/( 0.0821 L.atm/k.mol x 308 k)= 0.178 moles
Agt STP 1 mole= 22.4 L what obout 0.178 moles
= 22.4 x0.178moles/ 1moles =3.98 L( answer C)
Answer:
It usually leads to more confidence in the results
Answer:
5.71 g
Explanation:
Step 1: Write the balanced equation
2 K + Cl₂ ⇒ 2 KCl
Step 2: Calculate the moles corresponding to 12.0 g of KCl
The molar mass of KCl is 74.55 g/mol.
12.0 g × 1 mol/74.55 g = 0.161 mol
Step 3: Calculate the moles of Cl₂ needed to produce 0.161 moles of KCl
The molar ratio of Cl₂ to KCl is 1:2. The moles of Cl₂ needed are 1/2 × 0.161 mol = 0.0805 mol
Step 4: Calculate the mass corresponding to 0.0805 moles of Cl₂
The molar mass of Cl₂ is 70.91 g/mol.
0.0805 mol × 70.91 g/mol = 5.71 g
<span>Bases and Acids are chemically opposite from each other,and there are multiple ways to distinguish how they react when dissolved in water.
One accepted definition is that an acid is any chemical substance that, when it is dissolved in water, creates a solution with hydrogen ion activity greater than pure/neutral water. That is, it donates a proton to the solution. Any substance with a pH less than 7.0 is an acid, and includes substances such as vinegar and lemon juice.
By comparison, a base is any chemical substance that, when it is dissolved in water, creates a solution in which has hydrogen ion activity less than pure/neutral water. That is, it accepts protons. Any substance with a pH greater than 7.0 is a base, and includes substances such as ammonia and baking soda.</span>
Answer: IONIC EQUATION.
Explanation:
A chemical equation is defined as the form by which a chemical reaction is represented mathematically. These are written in the form of symbols and chemical formulas of reactants and products which are taking part in the chemical reaction. A chemical equation can be written in two forms, these include:
--> MOLECULAR EQUATION: in this type of equations, the compounds are written and represented in a molecular form. This is sometimes referred to as a balanced equation.
--> IONIC EQUATION: This is a type of chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions. A typical illustrated example is seen in the reaction between AgNO3(aq) and NaCl(aq) :
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq)
The (aq) written in the above equation signifies they are in aqueous solution.