Answer:
Mass = 12.276 g
Explanation:
Given data:
Number of molecules of H₂S = 2.16 × 10²³
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
Number of moles of H₂S:
2.16 × 10²³ molecules × 1 mole /6.022 × 10²³ molecules
0.36 moles
Mass = number of moles × molar mass
Mass = 0.36 mol × 34.1 g/mol
Mass = 12.276 g
Answer:
I have no clue at all im in 11 and dont know anything lol byeeee
Explanation:um um i am lost
The combined gas<span> law states that the </span>pressure of a gas<span> is inversely related to the</span>volume<span> and directly related to the </span>temperature<span>. If </span>temperature<span> is held constant, the equation is </span>reduced<span> to Boyle's law. Therefore, if you </span>decrease<span> the </span>pressure<span> of a fixed amount of </span>gas<span>, its </span>volume<span> will increase.</span>
Answer:
See the answer below
Explanation:
<em>The pH scale is important in science because it gives an indication of how acidic or basic a solution is. The scale ranges from 0 - 14 with 0 being the most acidic and 14 being the most basic while a pH of 7 is a neutral pH.</em>
The pH scale is widely applicable in several scientific applications such as in medicine/health, agricultural processes, industrial processes, environmental monitoring, research and development, etc.
In medicine, the pH of the stomach is monitored in order to make some diagnosis. The normal pH of the human stomach ranges from 1.5 - 3.5 and a major deviation from this range can give an indication of wrong health.
In agriculture, the pH condition of the soil on which crops are grown is quite important. While some crops require slightly acidic soil, some will only do well in alkaline soil. Hence, the pH condition of the soil must be monitored to ensure the optimal yield of crops.
Several industrial processes require the monitoring of pH in order to ensure product's quality or monitor some important reactions. In food industries, for example, monitoring the pH of reactions is necessary in order to prevent contamination by pathogens or ensure a good organoleptic quality of the final product. It is also necessary to monitor the pH of industrial wastewaters in order to avoid polluting the environment.
Monitoring pH is also important for environmental monitoring, The pH of various water bodies or soil can give an indication of the level of pollution in the water or the soil.