Given Information:
KEa = 9520 eV
KEb = 7060 eV
Electric potential = Va = -55 V
Electric potential = Vb = +27 V
Required Information:
Charge of the particle = q = ?
Answer:
Charge of the particle = +4.8x10⁻¹⁸ C
Explanation:
From the law of conservation of energy, we have
ΔKE = -qΔV
KEb - KEa = -q(Vb - Va)
-q = KEb - KEa/Vb - Va
-q = 7060 - 9520/27 - (-55)
-q = 7060 - 9520/27 + 55
-q = -2460/82
minus sign cancels out
q = 2460/82
Convert eV into Joules by multiplying it with 1.60x10⁻¹⁹
q = 2460(1.60x10⁻¹⁹)/82
q = +4.8x10⁻¹⁸ C
Answer:
562.5J
Explanation:
The following were obtained from the question:
F = 45N
d = 12.5m
w =?
The work done can be achieved by using
w = F x d
w = 45 x 12.5
w = 562.5J
A very small source of light that radiates uniformly in all directions produces an electric field with an amplitude of ܧ at a distance R from the source. What is the amplitude of the magnetic field at a point 2R from the source?
If the distance from the source is doubled. The amplitude of the magnetic field is smaller 4 times.
The longer the time between the arrival of the P-wave and S-wave, the <u>farther away</u> is the epicenter.
<h3>
What is epicenter and the relation between P-wave and S-wave?</h3>
- The point on the earth's surface vertically above the hypocenter (or focus), point in the crust where a seismic rupture begins is said to be epicenter.
- There are two types of waves during earthquakes, they are:
- P - wave
- S - wave
- Each seismograph records the times when the first (P waves) and second (S waves) seismic waves arrive.
- From the graph, through the information, scientists can determine how fast the waves are traveling.
- The longer the time between the arrival of the P-wave and S-wave, the farther away is the epicenter.
Hence, Option B is the correct answer.
Learn more about epicenter,
brainly.com/question/28136716
#SPJ1