Answer:
voltage = -0.01116V
power = -0.0249W
Explanation:
The voltage v(t) across an inductor is given by;
v(t) = L
-----------(i)
Where;
L = inductance of the inductor
i(t) = current through the inductor at a given time
t = time for the flow of current
From the question:
i(t) =
A
L = 10mH = 10 x 10⁻³H
Substitute these values into equation (i) as follows;
v(t) = 
Solve the differential
v(t) = 
v(t) = -0.05 
At t = 8s
v(t) = v(8) = -0.05 
v(t) = v(8) = -0.05 
v(t) = -0.05 x 0.223
v(t) = -0.01116V
(b) To get the power, we use the following relation:
p(t) = i(t) x v(t)
Power at t = 8
p(8) = i(8) x v(8)
i(8) = i(t = 8) = 
i(8) = 
i(8) = 10 x 0.223
i(8) = 2.23
Therefore,
p(8) = 2.23 x -0.01116
p(8) = -0.0249W
The pressure drop of air in the bed is 14.5 kPa.
<u>Explanation:</u>
To calculate Re:

From the tables air property

Ideal gas law is used to calculate the density:
ρ = 
ρ = 1.97 Kg / 
ρ = 
R =
= 8.2 ×
/ 28.97×
R = 2.83 ×
atm / K Kg
q is expressed in the unit m/s
q = 1.24 m/s
Re =
Re = 2278
The Ergun equation is used when Re > 10,


= 4089.748 Pa/m
ΔP = 4089.748 × 3.66
ΔP = 14.5 kPa
Answer:
the saturated density should be
Explanation:
Aviation refers to flying using an aircraft, like an aeroplane. It also includes the activities and industries related to flight, such as air traffic control. The biggest of the many uses of aviation are in air travel and military aircraft . The main difference between aeronautics and aviation is their focus. Aeronautics involves the study of the science, design, and manufacture of flying vehicles while aviation involves flying or operating an aircraft and various activities surrounding mechanical flight and the aircraft industry