Answer:
Step-by-step explanation:
<h3>AP given</h3>
<h3>To find</h3>
<h3>Solution</h3>
Common difference
<u>Difference of first two</u>
- d = (a -b) - (a + b) = -2b
<u>Difference of second two</u>
<u>Difference of last two</u>
<u>Now comparing d:</u>
- -2b = ab - (a - b)
- ab - a = - 3b
- a(1 - b) = 3b
- a = 3b/(1 - b)
and
- a/b - ab = -2b
- a(1/b - b) = -2b
- a = 2b²/(b² - 1)
<u>Eliminating a:</u>
- 2b²/(b² - 1) = 3b/(1 - b)
- 2b/(b+1) = -3
- 2b = -3b - 3
- 5b = - 3
- b = -3/5
<u>Finding a:</u>
- a = 3b/(1 - b) =
- 3*(-3/5) *1/(1 - (-3/5)) =
- -9/5*5/8 =
- -9/8
<u>So the first term is:</u>
- a + b = -3/5 - 9/8 = -24/40 - 45/40 = - 69/40
<u>Common difference:</u>
<u>The 6th term:</u>
- a₆ = a₁ + 5d =
- -69/40 + 5*6/5 =
- -69/40 + 240/40 =
- 171/40 = 4 11/40
9514 1404 393
Answer:
Step-by-step explanation:
The lateral surface area is the product of half the circumference, and the slant height:
LA = πrh = π(11.4 cm)(23 cm) = 262.2π cm²
The total surface area adds the area of the base to that:
A = πr² +LA = π(11.4 cm)² +262.2π cm² = (129.96 +262.2)π cm²
A = 392.16π cm²
Answer:
-3-2+3=-2
Step-by-step explanation:
A-2+3=-2
-3 -3
A-2=-5
+2 +2
A=-3
So, A-2+3=-2 is now -3-2+3=-2
Answer:
-3a-4b+5
Step-by-step explanation:
(3a-6b+12)-(6a-2b+7)
3a-6b+12-6a+2b-7
3a-6a-6b+2b+12-7
-3a-4b+5
We can write the function in terms of y rather than h(x)
so that:
y = 3 (5)^x
A. The rate of change is simply calculated as:
r = (y2 – y1) / (x2 – x1) where r stands for rate
Section A:
rA = [3 (5)^1 – 3 (5)^0] / (1 – 0)
rA = 12
Section B:
rB = [3 (5)^3 – 3 (5)^2] / (3 – 2)
rB = 300
B. We take the ratio of rB / rA:
rB/rA = 300 / 12
rB/rA = 25
So we see that the rate of change of section B is 25
times greater than A