Answer:
True
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
<em>Hence, the atomic radius of phosphorus is smaller than the atomic radius of magnesium. Basically, the atomic radius of phosphorus is 98 pm while the atomic radius of magnesium is 145 pm.</em>
The answer is D. A compound
Any substance made out of iotas, that has mass and possesses space. Matter ought not be mistaken for mass, as the two are not the same in current material science. Matter is itself a physical substance of which frameworks might be formed, while mass isn't a substance but instead a quantitative property of issue and different substances or frameworks. While there are diverse perspectives on what ought to be viewed as issue, the mass of a substance or framework is the same regardless of any such meaning of issue. Another distinction is that issue has an "inverse" called antimatter, however mass has no inverse—there is no such thing as "hostile to mass" or negative mass. Antimatter has the same (i.e. positive) mass property as its typical issue partner.
The correct answers are:
1. B. Mg loses two electrons.
When Mg and Br combine, 2 atoms of Br attaches itself to
Mg. The chemical reaction is:
Mg + Br ---> MgBr2
Since Br is more electronegative than Mg, then Mg loses
an electron per Br therefore losing 2 electrons.
2. D. An atom that gains electrons must be attracted to an atom
that loses electrons.
An ionic bond is formed when one molecule is more
electronegative than the other molecule which results in gaining and losing of
electrons. The more electronegative molecule gains electron while the less
electronegative loses electron.