Answer:
The dimension is 
Explanation:
From the question we are told that

Here ![[J] = \frac{1}{L^2 T}](https://tex.z-dn.net/?f=%5BJ%5D%20%3D%20%5Cfrac%7B1%7D%7BL%5E2%20T%7D)
![[n] =\frac{1}{L^3}](https://tex.z-dn.net/?f=%5Bn%5D%20%3D%5Cfrac%7B1%7D%7BL%5E3%7D)
![[x] = L](https://tex.z-dn.net/?f=%5Bx%5D%20%3D%20L)
So
![\frac{1}{L^2 T} = -D \frac{d(\frac{1}{L^3})}{d[L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7BL%5E2%20T%7D%20%3D%20%20-D%20%5Cfrac%7Bd%28%5Cfrac%7B1%7D%7BL%5E3%7D%29%7D%7Bd%5BL%5D%7D)
Given that the dimension represent the unites of n and x then the differential will not effect on them
So
=> 
=> 
Answer:
Explanation:
Impedence of the circuit = peak voltage / peak current
= 5.8 / 51 x 10⁻³
= 113.725 ohm.
1 / wC =113.725
w = 1 / (113.725 x 22 x 10⁻⁹ )
= 10⁹ / 2.5 x 10³
=10⁶ / 2.5
40 x 10⁴
frequency n = 40 x 10⁴ / 2 x 3.14
6.37 x 10⁴ Hz.
b ) charge on the capacitor = 1 C
V = Q / C
= Charge / capacitor
= 1 / 22 x 10⁻⁹
4.54 x 10⁷ V.
Cadmium zinc telluride, zinc cadmium sulfide
Answer:
Advantages: Very sturdy, can have several cracks in structure before breaking
disadvantages: best for short distances, not attractive, hard to maintain
Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀