Answer:
Option D
Reacts with sodium to form chloride
Explanation:
First, reaction between chlorine and sodium is a chemical reaction and not physical properties. Secondly, when chlorine reacts with sodium, it forms sodium chloride, NaCl NOT chloride as depicted by the statement. Otherwise, chlorine exists in the form of gas and is yellowish in color. Moreover, it's density is approximately 3.11 grams per liter. Therefore, the right answer is option D
Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º
Answer:
= +3,394 103 m / s
Explanation:
We will solve this problem with the concept of the moment. Let's start by defining the system that is formed by the complete rocket before and after the explosions, bone with the two stages, for this system the moment is conserved.
The data they give is the mass of the first stage m1 = 2100 kg, the mass of the second stage m2 = 1160 kg and its final velocity v2f = +5940 m / s and the speed of the rocket before the explosion vo = +4300 m / s
The moment before the explosion
p₀ = (m₁ + m₂) v₀
After the explosion
pf = m₁
+ m₂ 
p₀ = [texpv_{f}[/tex]
(m₁ + m₂) v₀ = m₁
+ m₂
Let's calculate the final speed (v1f) of the first stage
= ((m₁ + m₂) v₀ - m₂
) / m₁
= ((2100 +1160) 4300 - 1160 5940) / 2100
= (14,018 10 6 - 6,890 106) / 2100
= 7,128 106/2100
= +3,394 103 m / s
come the same direction of the final stage, but more slowly
Freezing point of the water is known as 273 K
Hope this helps!