Answer:
The electric potential in volts is 1.618 x 10⁻¹⁷ V
Explanation:
The electric potential, in volts, at point P, can be calculated as follow;
Electric potential is the work done in moving a unit positive charge from infinity to a particular point in the electric field.
Thus, the work done in this process in moving the charge to point p is 101eV.
Convert this Volts = 101 × 1.602 x 10⁻¹⁹ V
= 1.618 x 10⁻¹⁷ V
Therefore, the electric potential in volts is 1.618 x 10⁻¹⁷ V
Answer:
The value is
Explanation:
From the question we are told that
The amount of power delivered is 
The time taken is 
The wavelength is 
Generally the energy delivered is mathematically represented as

Where
is the Planck's constant with value 
c is the speed of light with value 
So

=> 
Answer:
Trophosphere
Explanation:
The troposphere is the atmospheric layer closest to the planet and is characterized because contains the largest percentage of the mass of the total atmosphere.
On special characteristic is that in this layer the temperature and water vapor content decrease a lot respect to the altitude. Also on this layer the Water vapor is important in order to regulate the air temperature since on this zone we have absorption of the solar energy.
The troposphere contains almost all the water vapor in the atmosphere. And specially on the tropics we have an accumulation of the water vapour.
All weather phenomena occur within the troposphere. Tropos means "change" and Troposphere means "region of mixing".
Above this layer, we have the tropopause, ranges in height from 5 miles near the poles up to 11 miles above the equator. And the height depends of the seasons, with an special characteristic: the is highest height occurs in the summer and lowest height occurs in the winter.
The troposphere contains almost 75% of the mass of the entire atmosphere. The air on this layer is composed by 78% nitrogen, 21% oxygen and 1% is made of argon, water vapor, and carbon dioxide.
So for this reason this is the Region that contains the majority of molecules in the atmosphere.
When you put a thermometer in your mouth , it becomes the same temperature as you then it starts to measure the temperature of itself
The air flows slower in a bigger space. The air in a small space hit each other heating up, and move faster and faster. is that what your asking?