the main properties of the main wave propertioes include wavelength amplitude, cruest an trough
<h3><em>If two objects with the same charge are brought towards each other the force produced will be repulsive, it will push them apart. If two objects with opposite charges are brought towards each other the force will be attractive, it will pull them towards each other.</em></h3><h3><em>hope it helps.... thank you....</em></h3>
<span>To find the acceleration we are given two facts to begin. The impact at 16 km/h and the dent of 6.4 cm, or 0.064 meters. In solving the problem uniform acceleration is assumed, which would mean the avg speed during the impact was 8 km/hr by taking 16/2. We know distance = rate*time (d=r*t) . So t = d / r, so 0.64/8 = 0.008hr for t. Now we can solve for acceleration by taking a = 16 / 0.008 = 2000 km/hr.</span>
Answer:
10.32874 m
Explanation:
= Atmospheric pressure = 101325 Pa
g = Acceleration due to gravity = 9.81 m/s²
h = Height of water
= Density of water = 1000 kg/m³
If the walls of the tube do not collapse that means that maximum pressure inside will be the atmospheric pressure
Atmospheric pressure is given by

The maximum height to which Superman can lift the water is 10.32874 m
On the Moon there is no atmosphere so no atmospheric pressure which means when the straw is placed in water water will not rise in the tube.
The original kinetic energy will be 0 J and the final kinetic energy will be 7500 J and the amount of work utilized will be similar to the final kinetic energy i.e., 7500 J.
<u>Explanation:</u>
As it is known that the kinetic energy is defined as the energy exhibited by the moving objects. So the kinetic energy is equal to the product of mass and square of the velocity attained by the car. Thus,

So the initial kinetic energy will be the energy exerted by the car at the initial state when the initial velocity is zero. Thus the initial kinetic energy will be zero.
The final kinetic energy is
= 7500 J
As the work done is the energy required to start the car from zero velocity to 5 m/s velocity.
Work done = Final Kinetic energy - Initial Kinetic energy
Thus the work utilized for moving the car is
Work done = 7500 J - 0 J = 7500 J
Thus, the initial kinetic energy of the car is zero, the final kinetic energy is 7500 J and the work utilized by the car is also 7500 J.