Answer:
Explanation:
If one assume that each turn is like a strand of electromagnet, which can then be added up. Therefore, increase in the number of turns will yield to increase in the magnetic strength. Also if the current increases, then there will be increase in the magnetic field strength.
From Ohm's law
V = IR
I = V/R
That is a direct increase in voltage will lead to increase in current.
Increase the voltage of the battery and increases the number of turns of the coil. Will suit the situation
Electric forces is not action-by-distance. Charged particle emits a electric field radially outwards. It corresponds by the inverse-square, meaning it is 1/r^2.
Answer:
87.1 mph
Explanation:
We are given that
Mass,m=60 kg
Power,P=340 W
Speed,v=5 m/s
Area,
Drag coefficient,
Coefficient of rolling resistance,
Friction force,
Where 
Let speed of cyclist=v'
Drag force,
Density of air,

Power,P=



1 m=0.00062137 miles
1 hour=3600 s
Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:
