Answer:
The mass of the another block is 60 kg.
Explanation:
Given that,
Mass of block M= 100 kg
Height = 1.0 m
Time = 0.90 s
Let the mass of the other block is m.
We need to calculate the acceleration of each block
Using equation of motion

Put the value into the formula



We need to calculate the mass of the other block
Using newton's second law
The net force of the block M

....(I)
The net force of the block m

Put the value of T from equation (I)



Put the value into the formula


Hence, The mass of the another block is 60 kg.
Answer:
Explanation:
The momentum of the 25 kg mass is


If this whole momentum of the object is transferred to the 5.0 kg object then according to the law of conservation of momentum, the momentum of the 25.0 kg object must be transferred to the 5.0 kg object:



Their velocity afterwards is 2.88 m/s east
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, for an isolated system (= no external force), the total momentum must be conserved before and after the collision. So we can write:
where: in this case:
is the mass of the first player
is the initial velocity of the first player (choosing east as positive direction)
is the mass of the second player
is the initial velocity of the second player
is their combined velocity afterwards
Solving for v, we find:
And the sign is positive, so the direction is east.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
The observer detects light of wavelength is 115 nm.
(b) is correct option
Explanation:
Given that,
Wavelength of source = 500 nm
Velocity = 0.90 c
We need to calculate the wavelength of observer
Using Doppler effect

Where, 


Hence, The observer detects light of wavelength is 115 nm.