1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
2 years ago
5

How many solutions?​

Mathematics
2 answers:
Zanzabum2 years ago
7 0

Answer:

No solution

Step-by-step explanation:

As soon as you minus the equations from each other, the y's and x's cancel out therefore there is no solution

jeyben [28]2 years ago
3 0

Answer:A) no solutions

Step-by-step explanation:

1) set both problems equal to each other

2) subtract four from each side

3) subtract 2x from each side

4) 10 does not equal 0

You might be interested in
Help, please! sorry I have so many of these
Mademuasel [1]
Median = 70.

If you arrange all the numbers in ascending order, 70 will be the middle number.
7 0
3 years ago
Se quiere construir un muro de 4 m de alto, 12 m de largo y 10 cm de espesor. ¿Cuántos ladrillos de 8 cm de alto, 20 cm de largo
Llana [10]

Answer:

3000

Step-by-step explanation:

Let's start by finding the volume of the wall. The volumen of the wall can be considered as the volume of a rectangular prism. The volume of a rectangular prism is given by:

V_w=w*l*h\\\\Where:\\\\w=Width=10cm=0.1m\\l=Length=12m\\h=Height=4m

So the volume of the wall is:

V_w=0.1*12*4=4.8m^3

Now, we can find the volume of the brick using the same method since a brick can be considered as a rectangular prism as well:

V_b=w*l*h\\\\For\hspace{3}the\hspace{3}brick\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Hence:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

In order to know how many bricks are required to build the wall, we just need to fill the wall volume with the number of bricks of this volume. So:

V_w=nV_b\\\\Where\\\\n=Number\hspace{3}of\hspace{3}bricks

Solving for n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Therefore, we need 3000 bricks to build that wall.

Translation:

Comencemos por encontrar el volumen del muro. El volumen del muro puede considerarse como el volumen de un prisma rectangular. El volumen de un prisma rectangular viene dado por:

V_w=w*l*h\\\\Donde:\\\\w=Espesor=10cm=0.1m\\l=Largo=12m\\h=Alto=4m

Entonces el volumen del muro es:

V_w=0.1*12*4=4.8m^3

Ahora, podemos encontrar el volumen del ladrillo utilizando el mismo método, ya que un ladrillo también puede considerarse como un prisma rectangular:

V_b=w*l*h\\\\Para\hspace{3}el\hspace{3}ladrillo\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Por lo tanto:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

Para saber cuántos ladrillos se requieren para construir el muro, solo necesitamos llenar el volumen del muro con la cantidad de ladrillos de este volumen. Entonces:

V_w=nV_b\\\\Donde\\\\n=Numero\hspace{3}de\hspace{3}ladrillos

Resolviendo para n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Por lo tanto, necesitamos 3000 ladrillos para construir ese muro.

4 0
3 years ago
Help I need this equation rn ASAP
EleoNora [17]

y=-2x+1

So, -2x, you go down 2 every time you go across 1. So, the rise is -2, and the run is 1, so it's -2x

+1: when you reach an x of 0, you are still up 1. So, the y-intercept is 1

4 0
1 year ago
You are in a bike race. When you get to the first checkpoint you are 2/5 of the distance to the second checkpoint. When you get
Mamont248 [21]
The first checkpoint = 1check
the second checkpoint = 2check
complete distance  = f

1check = 2/5 (2check)
2check = 1/4 (f)
then
1check = 2/5 * 1/4 (f)
1check = 1/10 f
the distance of the first check point is 1/10 of the distance of race
5 0
3 years ago
What is the number of ways to<br> arrange 5 objects from a set of 8<br> different objects?
jekas [21]

Answer:

6,720 ways

Step-by-step explanation:

Since in the problem arrangemnt is being asked this is a problem of permutation.

No . of ways of arranging r things out of n things is given by

P(n,r) =   n!/(n-r)!

In the problem given we have to arrange 5 objects from set of 8 objects.

Here n = 8 and p = 5

it can be done in in

P(8,5) =   8!/(8-5)! ways

8!/(8-5)!  = 8!/3! = 8*7*6*5*4*3!/3! = 8*7*6*5*4 = 6,720

Thus,  number of ways to  arrange 5 objects from a set of 8

different objects is P(8,5) =   8!/(8-5)! =  6,720 .

4 0
3 years ago
Other questions:
  • Please help. URGENT. THANK YOU
    14·1 answer
  • What are facts about sample space?
    14·1 answer
  • Can you please help me I really need help urgently pls
    12·2 answers
  • Can someone help me with question (b)??
    15·1 answer
  • Xiao's teacher asked him to rewrite the sum 60+ 90 as the product of the GFC of the two numbers and a sum. Xiao wrote 3(20+30).
    9·1 answer
  • Gina and rhonda work for different real estate agencies gina earns a monthly salary of $5,000 plus 6% commission on her salary r
    15·1 answer
  • I solve for y<br> 1/2X - 3y = 12​
    5·2 answers
  • Please help Me I gotta finish and no lying please. (NO LINKS)
    8·1 answer
  • Whats 1/5 x 26 estimated
    6·2 answers
  • !!!!!!!!!!!25 POINTS!!!!!!!!!!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!