An ordered pair which makes both inequalities true is (-1, -3).
<h3>What is an ordered pair?</h3>
An ordered pair is a pair of two points that are commonly written in a fixed order within parentheses as (x, y), which represents the x-coordinate or x-axis (abscissa) and the y-coordinate or y-axis (ordinate) on the coordinate plane of any graph.
Next, we would test the ordered pair with the given system of inequalities in order to determine which is true.
For ordered pair (-3, 5), we have:
y < –x + 1
5 < -(-3) + 1
5 < 3 + 1
5 < 4 (False).
For ordered pair (-2, 2), we have:
y < –x + 1
2 < -(-2) + 1
2 < 2 + 1
2 < 3 (True).
y > x
2 > -2 (True)
For ordered pair (-1, -3), we have:
y < –x + 1
-3 < -(-1) + 1
-3 < 1 + 1
-3 < 2 (True).
y > x
-3 > -1 (False)
For ordered pair (0, -1), we have:
y < –x + 1
-(-1) < -(0) + 1
1 < 1
1 < 1 (False).
y > x
-1 > 0 (False)
Read more on inequality here: brainly.com/question/27166555
#SPJ1
What midpoints are you wanting to measure?
Answer:
12 units right
17 1/2 units up
Step-by-step explanation:
Read this sentence in the problem carefully.
"<span>The number of pages in each program is determined by the number of graduates."
That means that you can have any number of graduates, and you will figure out the number of pages in the program depending on the number of graduates.
g, the number of graduates, is the independent independent variable.
p, the number of pages, is the dependent variable.
</span>