(a) 
First of all, we need to calculate the acceleration of the person, by using the following SUVAT equation:

where
v = 0 is the final velocity
u = 20.0 m/s is the initial velocity
a is the acceleration
d = 1.00 cm = 0.01 m is the displacement of the person
Solving for a,

And the average force on the person is given by

with m = 75.0 kg being the mass of the person. Substituting,

where the negative sign means the force is opposite to the direction of motion of the person.
b) 
In this case,
v = 0 is the final velocity
u = 20.0 m/s is the initial velocity
a is the acceleration
d = 15.00 cm = 0.15 m is the displacement of the person with the air bag
So the acceleration is

So the average force on the person is

<h2>
Answer:When electrons absorb or emit quantized units of energy in the form of photons.</h2>
Explanation:
When a electron is collided with a photon with exactly the same energy it would require to get to any of the farther orbits,electron transition takes place to an orbit depending on the energy of the photon.
When electrons emit exactly the same amount energy that is difference between the current energy level and the new level,then the electron makes a transition to the new level.
Answer:
v = 66.7 m/s
Explanation:
Given that,
The length of steel cable, L = 600 m
Diameter = 1.2 cm
It is observed that it took 18 s for the pulse to return.
The time taken to cover 600 m will be :
t = T/2
t = 9 s
Let v be the of the pulse. We know that,

So, the speed of the pulse is equal to 66.7 m/s.
Answer:
Spring constant, k = 0.3 N/m
Explanation:
It is given that,
Force acting on DNA molecule, 
The molecule got stretched by 5 nm, 
Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :



k = 0.3 N/m
So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.
Answer:
Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Explanation:
Mass of object 1 , m₁ = 300 g = 0.3 kg
Mass of object 2 , m₂ = 400 g = 0.4 kg
Initial velocity of object 1 , v₁ = 5.00i-3.20j m/s
Initial velocity of object 2 , v₂ = 3.00j m/s
Mass of composite = 0.7 kg
We need to find final velocity of composite.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = 0.3 x (5.00i-3.20j) + 0.4 x 3.00j = 1.5 i + 0.24 j kgm/s
Final momentum = 0.7 x v = 0.7v kgm/s
Comparing
1.5 i + 0.24 j = 0.7v
v = 2.14 i + 0.34 j
Magnitude of velocity

Direction,

Velocity is 2.17 m/s at an angle of 9.03° above X-axis.