Answer:
F = 5
Explanation:
F = m x v^2/r = 2 x 10^2/5 =200/5 = 40 (N)
Answer:
11,890
Explanation:
First we need to know what is considered a significant figure.
A significant figure is a value that is not a zero at the start OR end of a value.
Which means, the 0 in the value of 90 or 0.363 are not considered a significant figure.
The 0 in the value of 3056 is considered a significant figure.
So from the table, we can deduce:
0.275 has 3 significant figures
750 has 2 significant figures

has 3 significant figures.
11,890 has 4 significant figures.
320,050 has 5 significant figures.
So from the above, we can already see the answer.
The Average velocity for the bacterium is 0.75 unit/sec.
<u>Explanation:</u>
The given values are in the vector form
Where,
dS = distance covered
dT = time interval
Now, to calculate distance covered, we have

&

d S=(4.6 i+1.9 k)-(2.2 i+3.7 j - 1.2 k)
d S=(4.6-2.2) i+(0-3.7) j+(1.9+1.2) k
d S=2.4 i-3.7 j+3.1 k
Now, putting these values in the standard formula to evaluate the average velocity, we get;


As dT=7.2 sec
Now,
Solving the equation, we get;


Hence, the average velocity for the bacterium is 0.75 unit/sec.
Answer:
The detailed calculations are shown below;
Explanation:
a)The maximum acceleration of the particle:
It is seen that the maximum change in velocity is at the time between 8s to 10s.
Maximum acceleration: 
= 
= 10 m/
b) The deceleration of the particle
The velocity of particle is decreased after 10s so,
deceleration = - 
= - 6.67 m/
c)The total distance traveled by the particle = Area under the curve
=
* 4*20 + 4*20 +
* 2*20+ 2*20+
* 40*16
= 290 m
d)The average velocity of the particle = 
= 
= 18.12 m/s
Answer:
The solution and the graph are in the attached files below
Explanation: