1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
13

A ski gondola is connected to the top of a hill by a steel cable of length 600 m and diameter 1.2 cm . As the gondola comes to t

he end of its run, it bumps into the terminal and sends a wave pulse along the cable. It is observed that it took 18 s for the pulse to return. Part A What is the speed of the pulse?
Physics
1 answer:
Gemiola [76]3 years ago
6 0

Answer:

v = 66.7 m/s

Explanation:

Given that,

The length of steel cable, L = 600 m

Diameter = 1.2 cm

It is observed that it took 18 s for the pulse to return.

The time taken to cover 600 m will be :

t = T/2

t = 9 s

Let v be the of the pulse. We know that,

v=\dfrac{L}{t}\\\\v=\dfrac{600}{9}\\\\v=66.7\ m/s

So, the speed of the pulse is equal to 66.7 m/s.

You might be interested in
A long string is wrapped around a 6.6-cm-diameter cylinder, initially at rest, that is free to rotate on an axle. The string is
lys-0071 [83]

Answer:

\omega_f=571.42\ rpm

Explanation:

It is given that,

Diameter of cylinder, d = 6.6 cm

Radius of cylinder, r = 3.3 cm = 0.033 m

Acceleration of the string, a=1.5\ m/s^2

Displacement, d = 1.3 m

The angular acceleration is given by :

\alpha =\dfrac{a}{r}

\alpha =\dfrac{1.5}{0.033}

\alpha =45.46\ rad/s^2

The angular displacement is given by :

\theta=\dfrac{d}{r}

\theta=\dfrac{1.3}{0.033}

\theta=39.39\ rad

Using the third equation of rotational kinematics as :

\omega_f^2-\omega_i^2=2\alpha \theta

Here, \omega_i=0

\omega_f=\sqrt{2\alpha \theta}

\omega_f=\sqrt{2\times 45.46\times 39.39}

\omega_f=59.84\ rad/s

Since, 1 rad/s = 9.54 rpm

So,

\omega_f=571.42\ rpm

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.

5 0
3 years ago
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
The photeselestric effect is observed when light of a sufficiently high frequency is focused onto a polished metal surface, emit
Helga [31]

Answer:

3.4\cdot 10^{-19} J

Explanation:

In order to convert the work function of cesium from electronvolts to Joules, we must use the following conversion factor:

1 eV = 1.6 \cdot 10^{-19} J

In our problem, the work function of cesium is

E=2.1 eV

so, we can convert it into Joules by using the following proportion:

1 eV : 1.6\cdot 10^{-19} J = 2.1 eV : x\\x=\frac{(1.6\cdot 10^{-19} J)(2.1 eV)}{1 eV}=3.4\cdot 10^{-19} J

8 0
3 years ago
During a race, a runner runs at a speed of 6 m/s. 2 seconds later, she is running at a speed of 10 m/s. What is the runner’s acc
Lapatulllka [165]
Let's calculate the average acceleration. It is the rate of changing speeds. Hence, we need to calculate the difference of speeds. 10-6=4 m/s. The rate is now \frac{4m/s}{2s} =2m/s^2.
In general, the formula for the mean acceleration between two times 1 and 2 is given by:
\frac{u_2-u_1}{T} where v1 and v2 are the speeds at the respective points and T is the time interval between them.
5 0
3 years ago
Which of the following are density labels? <br> a. Kg/L <br> b. g/m <br> c. g/mL <br> d. cm/g
bearhunter [10]
Density is a value for mass, such as kg, divided by a value for volume, such as m3. Density is a physical property of a substance that represents the mass of that substance per unit volume. It is a property that can be used to describe a substance.<span> </span><span>It has standard units of kg/m^3 or g/mL. So, the best answer is option C.</span>

4 0
3 years ago
Read 2 more answers
Other questions:
  • According to Charles's Law, if the pressure of a gas stays constant, when the temperature increases, the volume __________.
    15·2 answers
  • You are asked to calculate an object's velocity, in order to do so you must know the object's ?
    12·1 answer
  • What is meant by constructive and destructive interference
    15·1 answer
  • The blackbody curved for a star named Beta is shown below. What is the surface temperature of the star rounded to the nearest wh
    10·2 answers
  • Which determines the reactivity of an alkali metal? A. its boiling and melting points B. the shininess of its surface C. the num
    8·2 answers
  • The combustion of a single molecule of methane produces about 10 ev of energy. a methane molecule has a mass of 16 amu. the fiss
    13·1 answer
  • Which chart provides the correct number of neutrons for each isotope of tin (Sn)?
    14·1 answer
  • To calculate power, divide the amount of energy transferred by...?
    5·1 answer
  • What units must the constant G have in order for the u it’s F to be newtons (N)?
    15·1 answer
  • for every 120 joules of energy input a car waste 85 joules, find the useful energy output of the car?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!