Answer:
Explanation:
Given: Density of blood = 1.03 × 10³ Kg/m³, Height = 1.93 m g = 9.8 m/s²
pressure at the brain is equal to atmospheric pressure. = Hydro-static
pressure(ρ₀)
∴ pressure of the foot = pressure of the brain(ρ₀) + ( density of blood × acceleration due to gravity × height)(ρgh)
Hydro-static pressure = pressure at the feet- pressure at the brain(ρ₀)
Hydro-static pressure (Δp) = (ρgh + ρ₀) - ρ₀ = ρgh
Hydro-static pressure = 1.03 × 10³ × 9.8 × 1.93 = 1.948 × 10⁴ Pa
∴ Hydro-static pressure ≈ 1.95 × 10⁴ Pa
Answer:
165.529454
Explanation:
According to the Pythagorean Theorem for calculating the lengths of a right angle triangle's sides, a^2 + b+2 = c^2, where c is the longest side (and the side opposing the right angle). So in your case it would be 150*150 + 70*70 = 27400. And √ 27400 is your answer.
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):
<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?
</span>The answer will typically be given in joules:
1J=kg∗m2s2 Could be wrong... But I believe it is 5.3...? as a final product.
Answer:

Explanation:
Distance is the product of speed and time.

The speed of the car is 75 kilometers per hour. It traveled for 5.5 hours.

Substitute the values into the formula.

Multiply. Note that the hours will cancel each other out.

The car travelled <u>412.5 kilometers.</u>
A. Move 2 m east and then 12 m east; displacement is 14 m east and the distance is 14 m
B. Move 10 m east and then 12 m west, the displacement is 2 m west and the distance is 22 m.
C. Move 8 m west and then 16 m east; the displacement is 8 m east and the distance is 24 m
D. Move 12 m west and then 8 m east; the displacement is 4 m and the distance is 20 m