In 1920, after returning from Army service, he produced a successful model and in 1923 turned it over to the Northeast Electric Company of Rochester for development.
Answer:
Explanation:
Inital KE = (1/2) m v^2 = (1/2) * 1500 * 50^2 = 1,875,000 J
Final KE = (1/2) * 1500 * 100^2 = 7,500,000 J
But ,
4 * 1875000 = 7500000
so the KE has increased by 4 times.
Answer:
288N
Explanation:
Given parameters:
Mass of Cheetah = 12kg
Acceleration = 24m/s²
Unknown:
Force needed by the cheetah to run = ?
Solution:
The force needed by the Cheetah to run is the net force.
According to Newton's law;
Force = mass x acceleration
Insert the given parameters and solve;
Force = 12 x 24 = 288N
Answer and Explanation:
This experiment is known as Lenz's tube.
The Lenz tube is an experiment that shows how you can brake a magnetic dipole that goes down a tube that conducts electric current. The magnet, when falling, along with its magnetic field, will generate variations in the magnetic field flux within the tube. These variations create an emf induced according to Faraday's Law:

This emf induced on the surface of the tube generates a current within it according to Ohm's Law:

This emf and current oppose the flux change, therefore a field will be produced in such a direction that the magnet is repelled from below and is attracted from above. The magnitude of the flux at the bottom of the magnet increases from the point of view of the tube, and at the top it decreases. Therefore, two "magnets" are generated under and above the dipole, which repel it below and attract above. Finally, the dipole feels a force in the opposite direction to the direction of fall, therefore it falls with less speed.
Answer:
a). 
b). 
c.) It must be at the bottom
Explanation:
Given:
Volume flow 
Well depp 
a.
The power output of the pum






b.
The pressure of difference the pum
Δ
Δ

c.
It must be at the bottom since the pressure difference is greater than atmospheric pressure, so it wouldn't be able to lift the water all the way