Answer:
Limiting reactant is NiSO₄
Explanation:
The reaction of aluminum metal with aqueous nickel(II) sulfate to produce aqueous aluminum sulfate and nickel is:
2 Al(s) + 3 NiSO₄ → Al₂(SO₄)₃ + 3 Ni
<em>That means 2 moles of Al react with 3 moles of nickel sulfate.</em>
<em />
Moles of Al and NiSO₄ are:
Al: 108g × (1mol / 26.98g) = 4.00 moles of Al
NiSO₄: 464g × (1mol / 154.75g) = 3.00 moles of NiSO₄
For a complete reaction of aluminium there are necessary:
4.00mol Al ₓ ( 3 moles NiSO₄ / 2 moles Al) = 6 moles of NiSO₄
As you have just 3.00 moles of NiSO₄, the <em>limiting reactant is NiSO₄</em>
Answer: a = 2 ; f = 5 ; b = 2 ; g = 2 ; c = 2 ; h = 2 ; d = 4 ; i = 5 ; e = 3 ; j = 7
Explanation: Some rules to follow while calculating sig figs is
1. If a number like 4500 is present, only two sig figs are counted, but none of the zeros are, but if 4500. has a decimal point present, then you should count all the numbers available.
2. If a number like .0005 is present, only count 5 as a sig fig, however if the number is .00050, count the 0 after the 5 in this example (this would then have two sig figs.
5.5 grams of reactants. According to the Law of Conservation of Mass, mass isn’t created or lost through any chemical changes, so the total mass should remain constant from the initial reactants to the final products.
The state of the substance, most likely, would be a gas. Given the same amount of the substance being able to fill different volumes of containers, means that the substance is compressible. From the three phases of matter, gas is surely the compressible one while liquids are sometimes compressible but only up to certain extent. Also, the substance cannot be a a solid since a solid would have a definite shape and volume. Nor it cannot be a liquid since a liquid cannot fill the whole container and it does not change its volume no matter what is the container.
Answer:
I'm not sure please list the elements respond with the list and I will give the answer.