Answer:
no sabo por q no mi entender
Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
Answer:
Only kinetic.
Explanation:
Potential energy means it has the potential to move. Not something already in motion.
5.5 s
Explanation:
The time it takes for the ball to reach its maximum height can be calculated using

since
at the top of its trajectory. Plugging in the numbers,

To solve this problem it is necessary to apply the concepts related to the geometry of a cylindrical tank and its respective definition.
The volume of a tank is given by

Where
d = Diameter
h = Height
Considering that there are two stages, let's define the initial and final volume as,


We know as well by definition that

Then we have for the statement that


Replacing the previous data


Solving to get h,

Therefore the change is



Therefore te change in the height of the water in the tank is 0.37mm