1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
2 years ago
9

Relate the properties of atoms, their position in the periodic table, and their number of valence electrons to their chemical re

activity.
Chemistry
1 answer:
dalvyx [7]2 years ago
3 0

Answer:

Explanation:

An atom is the smallest unit of an element that can take part in a chemical reaction. Atoms are made up of protons, neutrons and electrons. Atoms can exist as a monoatomic (such as in the case of Helium, Xenon and Neon) or as diatomic (such as in the case of oxygen and nitrogen). Atoms take part in a chemical reaction and there reactivity varies among themselves.

From the above, it can be deduced that atoms have protons, neutrons and electrons. The number of protons (which is positively charged) of an atom determines it's position on the periodic table because elements in the periodic table are arranged according to the number of protons (called atomic number). The electron(s) present in the outermost shell of each atom (called valence electrons) determines there chemical reactivity. What happens here is that, all atoms (except noble gases) want to achieve there duplet or octet configuration so as to become stable. This octet configuration means they want to have there outermost shell completely filled (with eight electrons or two electrons for duplet). They usually achieve this configuration by taking part in chemical reactions. Thus, when an atom has just one electron in it's outermost shell, it becomes easy to lose it to another atom by way of interacting with it in a chemical reaction. When it loses this single electron (valence electron) in it's outermost shell, it becomes stable with the inner completely filled shell (that would be the new outermost shell). Examples include Lithium, sodium and potassium. Sodium (with eleven electrons and three shells) would lose the single electron in it's outermost shell so as to have just two shells with the second shell completely filled with eight electrons. Thus, <u>the more the valence electron to be lost to achieve the octet structure</u>,<u> the lesser the reactivity of the atom</u>.

Also, an atom that has just one electron to complete it's own outermost shell and thus achieve it's octet structure is also highly reactive. This is also because it is easy for this atom to receive a single electron and become completely filled. Examples include chlorine, fluorine and iodine. Fluorine (with nine electrons and two shells) will easily accept one more electron so as to achieve it's octet structure with a completely filled outermost shell (of eight electrons). Thus, <u>the lesser the electrons to be gained to achieve the octet configuration, the higher the chemical reactivity of such atoms</u>. Noble gases have extremely low or no reactivity at all for this reason because it has a completely filled outermost shell (no losing or donating).

It should also be noted that metals (which are found on the left of the periodic table) exist as monoatomic while gases (which are found on the right), with the exception of noble gases, are mostly diatomic.

You might be interested in
Based on the kinetic theory, which statement is true?
Effectus [21]

answer is A

The kinetic theory is used to explain the behaviour of gases.

One of the assumptions states that "a gas is composed of a large number of identical molecules moving at different speeds".

7 0
3 years ago
Read 2 more answers
Consider the following reaction:
NeX [460]

For the given reaction, according to the Law of Conservation of Energy, the energy required to decompose Hcl and produce H_{2}+c l_{2} are equal.

Answer: Option C

<u>Explanation:</u>

According to law of conservation's of energy, energy can only be transferred from reactants to product side. So in this process, it is stated that 185 kJ of energy will be needed to decompose it. So that 185 kJ of energy will be getting transferred to produce the creation of hydrogen and chloride in the product side.

So if we see from the reactants side, the energy of 185 kJ is required for decomposition of hydrogen chloride. Similarly, if we see from the product side, the 185 kJ utilized for decomposition is transferred as energy required to create hydrogen and chlorine atoms. This statement will be in accordance with the law of conservation's of energy.

3 0
3 years ago
Read 2 more answers
The man who developed the concept that light is emitted and absorbed in bundles or packets was:
ludmilkaskok [199]
Planck suggested that light/energy was absorbed/released in certain amounts, called quanta.
3 0
3 years ago
Read 2 more answers
A large cyclotron directs a beam of He++ nuclei onto a target with a beam current of 0.250 mA. (a) How many He++ nuclei per seco
nikitadnepr [17]

Answer:

a. 7.8*10¹⁴ He⁺⁺ nuclei/s

b. 4000s

c. 7.7*10⁸s

Explanation:

I = 0.250mA = 2.5 * 10⁻³A

Q = 1.0C

1 e- contains 1.60 * 10⁻¹⁹C

But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C

(A).

No. Of charge per second = current passing through / charge

1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C

1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei

(B).

I = Q / t

From this equation, we can determine the time it takes to transfer 1.0C

I = 1.0 / 2.5*10⁻⁴ = 4000s

(C).

Time it takes for 1 mol of He⁺⁺ to strike the target =?

Using Avogadro's ratio,

1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)

Note : ions cancel out leaving the value of the answer in mols.

1.0 mol of He = 7.7 * 10⁸s

8 0
3 years ago
Which of the following reactions have a positive ΔSrxn? Check all that apply.
PolarNik [594]

Answer:

The reactions that have a <em>positive ΔS rxn </em>are the first and the fourth choices:

  • <em>2A(g) + B(s) → 3C(g)</em>

  • <em>2A(g) + 2B(g) → 5C(g)</em>

Explanation:

<em>ΔS rxn </em>is the change of entropy of the chemical reaction.

ΔS rxn = S after reaction - S before reaction.

Therefore, a positive ΔS rxn  means that the entropy after the reaction is greater than the entropy before the reaction.

You may use some assumptions to predict whether a reaction will lead an increase or decrease of the entropy.

First, assume that all the non-shown conditions, such as temperature and pressure, are constant.

Under that assumption, and from the meaning of entropy as a measure of the disorder or randomness of a system you can predict the sign of the change of entropy.

  • <em><u>2A(g) + B(s) → 3C(g)</u></em>

        1)  The solid compounds, B(s) in this case, are very ordered and so they have low entropy.

        2) Gas molecules are highly disordered (scattered), and the greater the number of molecules of the gas the larger the entropy, S).

Hence, since the product side shows 3 gas molecules and the reactant side shows 2 gas molecules and 1 solid molecule, you predict that the products have a larger entropy than the reactants, meaning an increase in entropy: <em>ΔS rxn is positive.</em>

  • <em><u>2A(g) + B(g) → C(g)</u></em>

Using the same reasoning, 3 gas molecules in the  reactant side have more entropy than 1 molecule in the product side, and so the reaction leads to a decrease in the entropy: ΔS rxn is negative

  • <u><em>A(g) + B(g) → C(g)</em></u>

Again, 2 gas molecules in the  reactant side have more entropy than 1 molecule in the product side, and so the reaction leads to a decrease in the entropy: ΔS rxn is negative

  • <u><em>2A(g) + 2B(g) → 5C(g)</em></u>

With the same reasoing, 5 molecules in the product side, lets you predict that will have more entropy than 4 molecules in the reactant side, and, the entropy will increase: <em>ΔS rxn is positive.</em>

6 0
3 years ago
Other questions:
  • Which of the following reactions is spontaneous?
    8·1 answer
  • Calculate the moles of Cu in 7.4×1021 atoms of Cu.
    10·1 answer
  • The height of a building is 31.0 meters.how tall is the building in kilometers?
    12·1 answer
  • List four things that could happen to water used in watering a local golf course
    7·1 answer
  • A 2.241-g sample of nickel reacts with oxygen to form 2.852 g of the metal oxide.
    5·1 answer
  • Name and explain 2 positives of renewable energy
    12·1 answer
  • What is the speed of the silver sphere at the moment it hits the ground? (Assume that energy is conserved during the fall and th
    12·1 answer
  • What metal has 95 protons Lead, mercury, americium, or francium?
    7·1 answer
  • Which element is correctly classified
    13·1 answer
  • If 16.9 kg of Al2O3(s), 57.4 kg of NaOH(l), and 57.4 kg of HF(g) react completely, how many kilograms of cryolite will be produc
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!