Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
1) The mass of the continent is 
2) The kinetic energy of the continent is 274.8 J
3) The speed of the jogger must be 2.76 m/s
Explanation:
1)
The continent is a slab of side 5900 km (so the surface is 5900 x 5900, assuming it is a square) and depth 26 km, therefore its volume is:

The mass of the continent is given by

where:
is its density
is its volume
Substituting, we find the mass:

2)
To find the kinetic energy, we need to convert the speed of the continent into m/s first.
The speed is
v = 1.6 cm/year
And we have:
1.6 cm = 0.016 m

So, the speed is

Now we can find the kinetic energy of the continent, which is given by

where
is the mass
is the speed
Substituting,

3)
The jogger in this part has the same kinetic energy of the continent, so
K = 274.8 J
And its mass is
m = 72 kg
We can write his kinetic energy as

where
v is the speed of the man
And solving the equation for v, we find his speed:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly
Answer:
.5 grams
Explanation:
1 gram is equal to 1000 milligrams (mg)
- La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
- La longitud de onda de las ondas sonoras es 1,470 metros.
1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (
), en metros por segundo:
(1)
Donde:
- Módulo de compresibilidad, en newtons por metro cuadrado.
- Densidad del agua, en kilogramos por metro cúbico.
Si sabemos que
y
, entonces la velocidad de las ondas sonoras es:


La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
2) Luego, determinamos la longitud de onda (
), en metros, mediante la siguiente fórmula:
(2)
Donde
es la frecuencia de las ondas sonoras, en hertz.
Si sabemos que
y
, entonces la longitud de onda de las ondas sonoras es:


La longitud de onda de las ondas sonoras es 1,470 metros.
Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238
Answer:
57 %
Explanation:
input power = 16.4 kW = 16.4 x 10^3 W = 16400 W
Water pumped per second = 67 L/s
Mass of water pumped per second, m = Volume of water pumped epr second x density of water
m = 67 x 10^-3 x 1000 = 67 kg/s
height raised, h = 14 m
Output Power = m x g x h / t = 67 x 10 x 14 = 9380 W
efficiency = output power / input power = 9380 / 16400 = 0.57
% efficiency = 57 %
thus, the efficiency of the pump is 57 %.