Answer:
More force
Explanation:
Object A has more mass than object B
For object A to accelerate at the same rate as object B, it will need more force.
According to Newton's second law of motion "the net force on a body is the product of its mass and acceleration".
Net force = mass x acceleration
Now, if a body has more mass and needs to accelerate at the same rate as another one with a lower mass, the force on it must be increased.
Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
Answer:
Newton, absolute unit of force in the International System of Units (SI units), abbreviated N. It is defined as that force necessary to provide a mass of one kilogram with an acceleration of one metre per second per second.
Earth has its own atmosphere. That is one reason all the water that has been on Earth has been recycled through the water cycle. It never leaves Earth’s atmosphere.
Answer:
Upthrust = 20 N
Explanation:
The question says that "A body weighs 100N in air and 80N when submerged in water. Calculate the upthrust acting on the body
?"
Upthrust is defined as the force when a body is submerged in liquid, then liquid applies a force on it.
ATQ,
Weight of body in air is 100 N
Weight of body in water is 80 N
Upthrust is equal to the weight of body in air minus weight of body in water.
Upthrust = 100 N - 80 N
Upthrust = 20 N
So, 20 N of upthrust is acting on the body.