Answer:
Coccus is suitable for dry environment and a rod is better adapted for moist environment.
Explanation:
The probability of Coccus would be better suitable for a environment which is dry. A sphere posses less surface area for the volume, as such, moisture which is lost through osmosis is less in dry environment conditions.
During a moist environment, the ratio of the surface area to volume of a rod shaped bacterium is high, which allow higher efficiency to transfer water and solutes into and outside of the cell, and to make possible for a cell which is in rod shaped, have a metabolic rate higher.
Answer:
s=1721.344m ,v=104.96m/s.
Explanation:
using thr equation of motion;

u=0, plane starts from rest,


s=1721.344m
v=u+at
v=0 +3.2*32.8
v=104.96m/s
Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
The wavelength of the golf ball is <u>2.328×10⁻³⁴m.</u>
All moving particles with mass have a matter wave associated with it. These matter waves are called deBroglie waves.
The deBroglie wavelength λ of a particle is given by,

Here, h is the Planck's constant, m is the mass of the ball and v is its velocity.
Calculate the deBroglie wavelength of the moving golf ball by substituting 6.626×10⁻³⁴J s for h, 45.9×10⁻³kg for m and 62.0 m/s for v.

The wavelength of the golf ball is <u>2.328×10⁻³⁴m.</u>