Answer:
In 33.7 grams SnF2 we have 8.17 grams of F
Explanation:
Step 1: Data given
Mass of SnF2 = 33.7 grams
Molar mass of SnF2 = 156.69 g/mol
Molar mass of F = 19.00 g/mol
Step 2: Calculate moles of SnF2
Moles SnF2 = mass / molar mass
Moles SnF2 = 33.7 grams / 156.69 g/mol
Moles SnF2 = 0.215 moles
Step 3: Calculate moles F
For 1 mol SnF2 we have 2 moles F
For 0.215 moles SnF2 we have 2*0.215 = 0.430 moles F
Step 4: Calculate mass F
Mass F = moles F * molar mass F
Mass F = 0.430 moles * 19.00 g/mol
Mass F = 8.17 grams
In 33.7 grams SnF2 we have 8.17 grams of F
Aluminium belongs to 13th group of periodic table. It undergoes oxidation to given Al^+3 .
It is observed that when aluminium is added to a solution of copper sulphate the colour of the solution changes from blue to grey. It is due to formation of grey coloured solution of aluminium sulphate as
2Al^+3 + 3SO4^-2 ---> Al2(SO4)3
The chemical breakdown of enormous quantities of organic material buried in the sedimentary rocks has produced ethane gas.
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.
Answer:
8 moles
Explanation:
When we are asked to convert from grams of a substance into moles, we have to use the substance's molar mass.
Meaning that for this problem, we'll <em>use the molar mass of hydrogen peroxide</em> (H₂O₂), as follows:
There are 8 moles in 272 grams of hydrogen peroxide.