V ( NaOH ) = mL ?
M ( NaOH ) = 0.100 M
V ( HCl ) = 9.00 mL / 1000 => 0.009 L
M ( HCl ) = 0.0500 M
number of moles HCl:
n = M x V
n = 0.009 x 0.0500 => 0.00045 moles HCl
mole ratio:
<span>HCl + NaOH = NaCl + H2O
</span>
1 mole HCl ---------------- 1 mole NaOH
0.00045 moles HCl ----- ??
0.00045 x 1 / 1 => 0.00045 moles of NaOH
M = n / V
0.100 = 0.00045 / V
V = 0.00045 / 0.100
V = 0.0045 L
1 L ------------ 1000 mL
0.0045 L ----- ??
0.0045 x 1000 / 1 => 4.5 mL of NaOH
Answer:
24.309 g/mol
Explanation:
To get the atomic mass, all we have to do is calculate with the masses of the three isotope, the real quantity present, taking account of the percent and then, do a sum of these three values. Like a pondered media.
For the first isotope:
23.99 * (78.99/100) = 18.95 g/mol
For the second isotope:
24.99 * (10/100) = 2.499 g/mol
For the last isotope:
25.98 * (11.01/100) = 2.86 g/mol
Now, let's sum all three together
AW = 18.95 + 2.499 + 2.86
AW = 24.309 g/mol
Answer:
b. glass and charcoal
Explanation:
Step 1: Given data
- Density of Glass: 2.6 g/mL
- Density of charcoal: 0.57 g/mL
- Density of platinum: 21.4 g/mL
Step 2: Determine which material will float in molten lead
Density is an intrinsic property of matter. Less dense materials float in more dense materials. The materials whose density is lower than that of lead and will therefore float on it are glass and charcoal.
A high altitude burst
A detonation of a nuclear explosive above 100,000 feet of altitude is called
______________.
<span>A high altitude burst</span>