<h3>
Answer: False</h3>
==============================================
Explanation:
I'm assuming you meant to type out
(y-2)^2 = y^2-6y+4
This equation is not true for all real numbers because the left hand side expands out like so
(y-2)^2
(y-2)(y-2)
x(y-2) .... let x = y-2
xy-2x
y(x)-2(x)
y(y-2)-2(y-2) ... replace x with y-2
y^2-2y-2y+4
y^2-4y+4
So if the claim was (y-2)^2 = y^2-4y+4, then the claim would be true. However, the right hand side we're given doesn't match up with y^2-4y+4
--------------------------
Another approach is to pick some y value such as y = 2 to find that
(y-2)^2 = y^2-6y+4
(2-2)^2 = 2^2 - 6(2) + 4 .... plug in y = 2
0^2 = 2^2 - 6(2) + 4
0 = 4 - 6(2) + 4
0 = 4 - 12 + 4
0 = -4
We get a false statement. This is one counterexample showing the given equation is not true for all values of y.
Answer:
3/2
Step-by-step explanation:
Given: 11-pound mixture of peanuts, almonds, and raisins
Cost:
peanuts - 1.5 per pound
almonds - 3 per pound
raisins - 1.5 per pound
mixture:
twice as many peanuts as almond; total cost of mixture is 21.
a + p + r = 11 lbs
a + 2a + r = 11 lbs
3a + r = 11
r = 11 - 3a
1.5(2a) + 3a + 1.5r = 21
3a + 3a + 1.5r = 21
6a + 1.5r = 21
6a + 1.5(11-3a) = 21
6a + 16.5 - 4.5a = 21
6a - 4.5a = 21 - 16.5
1.5a = 4.5
1.5a/1.5 = 4.5/1.5
a = 3
almonds = 3 lbs
peanuts = 2a = 2(3) = 6lbs
raisins = 11 - 3a = 11 - 3(3) = 11 - 9 = 2 lbs
<span>My answer is: C. 6 lbs peanuts, 3 lbs almonds, 2 lbs raisins </span>
Answer:
The probability is 0.683
Step-by-step explanation:
To calculate this, we shall be needing to calculate the z-scores of both temperatures
mathematically;
z-score = (x-mean)/SD
From the question mean = 78 and SD = 5
For 73
z-score = (73-78)/5 = -5/5 = -1
For 83
z-score = (83-78)/5 = 5/5 = 1
So the probability we want to calculate is within the following range of z-scores;
P(-1 <z <1 )
Mathematically, this is same as ;
P(z<1) - P(z<-1)
Using the normal distribution table;
P(-1<z<1) = 0.68269 which is approximately 0.683
1. 21,150
2. 2.5193
3. 27.98
4. 11,100