Answer:
yes, as it helps to increase global warming and it's main cause is deforestation
Explanation:
as carbon dioxide is a greenhouse gas. It helps to increase global warming
Answer:
is the maximum velocity of this reaction.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{K_m+[S]}=k_{cat}[E_o]\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products =
[S] = Concatenation of substrate
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= Initial concentration of enzyme
We have :


![[S]=0.110 mol/dm^3](https://tex.z-dn.net/?f=%5BS%5D%3D0.110%20mol%2Fdm%5E3)
![v=V_{max}\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![1.15\times 10^{-3} mol/dm^3 s=V_{max}\times \frac{0.110 mol/dm^3}{[(0.045 mol/dm^3)+(0.110 mol/dm^3)]}](https://tex.z-dn.net/?f=1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B0.110%20mol%2Fdm%5E3%7D%7B%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D)
![V_{max}=\frac{1.15\times 10^{-3} mol/dm^3 s\times [(0.045 mol/dm^3)+(0.110 mol/dm^3)]}{0.110 mol/dm^3}=1.620\times 10^{-3} mol/dm^3 s](https://tex.z-dn.net/?f=V_%7Bmax%7D%3D%5Cfrac%7B1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%5Ctimes%20%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D%7B0.110%20mol%2Fdm%5E3%7D%3D1.620%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s)
is the maximum velocity of this reaction.
Answer:
<h2>Density = 1.67 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 50 g
volume = 30 mL
Substitute the values into the above formula and solve for the density
That's

Wr have the final answer as
<h3>Density = 1.67 g/mL</h3>
Hope this helps you
<u>Answer:</u> The amount remained after 151 seconds are 0.041 moles
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 151 sec
= initial amount of the reactant = 0.085 moles
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.82\times 10^{-3}=\frac{2.303}{151}\log\frac{0.085}{[A]}](https://tex.z-dn.net/?f=4.82%5Ctimes%2010%5E%7B-3%7D%3D%5Cfrac%7B2.303%7D%7B151%7D%5Clog%5Cfrac%7B0.085%7D%7B%5BA%5D%7D)
![[A]=0.041moles](https://tex.z-dn.net/?f=%5BA%5D%3D0.041moles)
Hence, the amount remained after 151 seconds are 0.041 moles