Answer:
a) 40,75 atm
b) 30,11 atm
Explanation:
The Ideal Gas Equation is an equation that describes the behavior of the ideal gases:
PV = nRT
where:
- P = pressure [atm]
- V = volume [L]
- n = number of mole of gas [n]
- R= gas constant = 0,08205 [atm.L/mol.°K]
- T=absolute temperature [°K]
<em>Note: We can express this values with other units, but we must ensure that the units used are the same as those used in the gas constant.</em>
The truncated virial equation of state, is an equation used to model the behavior of real gases. In this, unlike the ideal gas equation, other parameters of the gases are considered as the <u>intermolecular forces</u> and the <u>space occupied</u> by the gas

where:
- v is the molar volume [L/mol]
- B is the second virial coefficient [L/mol]
- P the pressure [atm]
- R the gas constant = 0,08205 [atm.L/mol.°K]
a) Ideal gas equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
We clear pressure of the idea gas equation and replace the data:
PV = nRT ..... P = nRT/V = 5 * 0,08205 * 298/3 =40,75 atm
b) Truncated virial equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
B = -156,7*10^-6 m3/mol = -156,7*10^-3 L/mol
We clear pressure of the idea gas equation and replace the data:

and v = 3 L/5 moles = 0,6 L/mol

Hello.
The answer is: 3.3333
To get the answer add 2,5 and 3 that is 10 then divide by 3 to get 3.3
Have a nice day
25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
Answer: The squirrel's balloon will be 0.86 L
Explanation:
To calculate the new volume, we use the equation given by Boyle's law. This law states that pressure is directly proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Thus the squirrel's balloon will be 0.86 L
Molarity after dilution : 0.0058 M
<h3>Further explanation
</h3>
The number of moles before and after dilution is the same
The dilution formula
M₁V₁=M₂V₂
M₁ = Molarity of the solution before dilution
V₁ = volume of the solution before dilution
M₂ = Molarity of the solution after dilution
V₂ = Molarity volume of the solution after dilution
M₁=0.1 M
V₁=6.11
V₂=105.12
