Answer:
I believe this is a K-12 test question. If the answers below are what you have on your test . . .
- Precise
- Accurate
- Identical
- None of the above
Then the answer is <u>precise</u>.
Answer:
1.62
Explanation:
From the given information:
number of moles of benzamide 
= 0.58 mole
The molality = 

= 0.6837
Using the formula:

where;
dT = freezing point = 27
l = Van't Hoff factor = 1
kf = freezing constant of the solvent
∴
2.7 °C = 1 × kf × 0.6837 m
kf = 2.7 °C/ 0.6837m
kf = 3.949 °C/m
number of moles of NH4Cl = 
= 1.316 mol
The molality = 
= 1.5484
Thus;
the above kf value is used in determining the Van't Hoff factor for NH4Cl
i.e.
9.9 = l × 3.949 × 1.5484 m

l = 1.62
The redox reaction is

Here
Calcium undergoes reduction, and acts as cathode
Lithium undergoes oxidation and acts as anode
The reduction potential of calcium is -2.87 V
The reduction potential of lithium is - -3.05 V
We know that
Ecell = Ecathode - Eanode
Ecell = -2.87 - (-3.05) = 0.18 V
Answer:
The weigth of a 90kg man standing on the moon is <u><em>147.6 N (option C)</em></u>
Explanation:
Weight is called the action exerted by the force of gravity on the body.
The mass (amount of matter that a body contains) of an object will always be the same, regardless of where it is located. Instead, the weight of the object will vary according to the force of gravity acting on it.
The formula that allows you to calculate the weight of any body is:
W = m*g
where:
- W = weight measured in N.
- m = mass measured in kg.
- g = acceleration of gravity measured in m/s². The acceleration of gravity g is the same for all objects that fall due to gravitational attraction, whatever their size or composition. For example, as an approximate value on Earth, g = 9.8 m/s².
In this case, the mass m has a value of 90 kg and the gravity g has a value of 1.64 m/s², which is the value of the acceleration of gravity of the moon. Then:
W=90 kg* 1.64 m/s²
<u><em>W= 147.6 N</em></u>
Finally, <u><em>the weigth of a 90kg man standing on the moon is 147.6 N (option C)</em></u>