The part of the atom that takes up the most space is the amount of electrons
Answer:
s = d÷ t
Explanation:
Where s means speed, d means distance and t means time
I was hoping that some choices would be given to choose from. As there are no choices given, so i am answering the question based on my knowledge and hope that it comes to your help. Calcium hydroxide is a good example of Arrhenius base. An Arrhenius base is actually a substance that releases a hydroxyl ion in water.
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!
The answer is
<span>2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g)
Your answer is not yet balanced because you have 3 oxygen atoms. it should be balanced by multiplying both side by 2 such as the balanced equation I made. To check it, I will explain why your answer is not yet balanced.
check: (from your equation)
</span> 1-Pb-1
1-S-1
2 -O-3
the difference between the reactant and the product of Oxygen will prove that it is not yet balanced.
If you use 2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g), to check it:
2-Pb-2
2-S-2
6 -O-6
then this is now balance