Answer:
Lengths. of. Naphthalene. Figure 3.20 shows that there are two equivalent ... all the carbon–carbon bonds of benzene are identical and are intermediate in length ... A typical carbon–carbon single bond has a length of 1.54 Å, and a double ... of how resonance can be used to explain or predict experimental observations.Explanation:
Yes they will need to worry cause the chemicals could spread in the water making it explode and kill animals and it would be very bad
<h2>
Answer:</h2>
Valance electrons can be determined by <u>Group</u> on the periodic table
<h2>
Explanation:</h2>
- Valence electrons are the electrons present in the outermost shell of an atom. We can determine the total number of valence electrons present in an atom by checking at its Group in which it is placed in the periodic table. For example, atoms in Groups 1 the number of valence electron is one and for group 2 the number of valence electrons is 2.
- The groups have number of valance electrons as follow:
Group 1 - 1 valence electron.
Group 2 - 2 valance electrons.
Group 13 - 3 valence electrons.
Group 14 - 4 valance electrons.
Group 15 - 5 valence electrons.
Group 16 - 6 valence electrons.
Group 17 - 7 valence electrons.
Group 18 - 8 valence electrons.
Result: No of valence electron can be determined by the group no. of the element.
Answer:
29.42 Litres
Explanation:
The general/ideal gas equation is used to solve this question as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K
According to the information provided in this question;
mass of nitrogen gas (N2) = 25g
Pressure = 0.785 atm
Temperature = 315K
Volume = ?
To calculate the number of moles (n) of N2, we use:
mole = mass/molar mass
Molar mass of N2 = 14(2) = 28g/mol
mole = 25/28
mole = 0.893mol
Using PV = nRT
V = nRT/P
V = (0.893 × 0.0821 × 315) ÷ 0.785
V = 23.09 ÷ 0.785
V = 29.42 Litres